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What Is IoT? 

IoT is a technology transition in which devices will allow us to sense and control the physical 

world by making objects smarter and connecting them through an intelligent network. 

GOAL: The basic premise and goal of IoT is to ―connect the unconnected.‖ This means that 

objects that are not currently joined to a computer network, namely the Internet, will be conn 

ected so that they can communicate and interact with people and other objects. 

When objects and machines can be sensed and controlled remotely across a network, a tighter 

integration between the physical world and computers is enabled. 

This allows for improvements in the areas of efficiency, accuracy, automation, and the enable 

ment of advanced applications. 

GENESIS OF IOT 

The person credited with the creation of the term ―Internet of Things‖ is Kevin Ashton. While 

working for Procter & Gamble in 1999, Kevin used this phrase to explain a new idea related 

to linking the company‘s supply chain to the Internet. 

 
INTELLIGENT CONNECTIONS 

The evolution of the Internet can be categorized into four phases. Each of these phases has 

had a profound impact on our society and our lives. These four phases are further defined in 

Table below. 
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IOT AND DIGITIZATION 

IoT and digitization are terms that are often used interchangeably. In most contexts, 

this duality is fine, but there are key differences to be aware of. 

At a high level, IoT focuses on connecting ―things,‖ such as objects and machines, to 

a computer network, such as the Internet. IoT is a well-understood term used across the 

industry as a whole. On the other hand, digitization can mean different things to different 

people but generally encompasses the connection of ―things‖ with the data they generate and 

the business insights that result. 

Digitization, as defined in its simplest form, is the conversion of information into a 

digital format. Digitization has been happening in one form or another for several decades. 

For example, the whole photography industry has been digitized. Pretty much everyone has 

digital cameras these days, either standalone devices or built into their mobile phones. 

Almost no one buys film and takes it to a retailer to get it developed. The digitization of 

photography has completely changed our experience when it comes to capturing images. 

 

CONVERGENCE OF IT AND OT 

Until recently, information technology (IT) and operational technology (OT) have for 

the most part lived in separate worlds. IT supports connections to the Internet along with 

related data and technology systems and is focused on the secure flow of data across an 

organization. OT monitors and controls devices and processes on physical operational 

systems. These systems include assembly lines, utility distribution networks, production 

facilities, roadway systems, and many more. Typically, IT did not get involved with the 

production and logistics of OT environments. 

Management of OT is tied to the lifeblood of a company. For example, if the network 

connecting the machines in a factory fails, the machines cannot function, and production may 

come to a standstill, negatively impacting business on the order of millions of dollars. On the 

other hand, if the email server (run by the IT department) fails for a few hours, it may irritate 

people, but it is unlikely to impact business at anywhere near the same level. Table below 

highlights some of the differences between IT and OT networks and their various 

challenges. 
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IOT CHALLENGES 

The most significant challenges and problems that IoT is currently facing are 
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IoT Network Architecture and Design 

 
The unique challenges posed by IoT networks and how these challenges have driven new 

architectural models. 

 

Drivers Behind New Network Architectures 

Comparing IoT Architectures. 

A Simplified IoT Architecture 
The Core IoT Functional Stack 

IoT Data Management and Compute Stack 

 

DRIVERS BEHIND NEW NETWORK  ARCHITECTURES 
 

This begins by comparing how using an architectural blueprint to construct a house is similar 

to the approach we take when designing a network. Take a closer look at some of the 

differences between IT and IoT networks, with a focus on the IoT requirements that are 

driving new network architectures, and considers what adjustments are needed. 
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COMPARING IOT ARCHITECTURES 
 

The oneM2M IoT Standardized Architecture 

In an effort to standardize the rapidly growing field of machine-to-machine (M2M) 

communications, the European Telecommunications Standards Institute (ETSI) created the 

M2M Technical Committee in 2008. The goal of this committee was to create a common 

architecture that would help accelerate the adoption of M2M applications and devices. Over 

time, the scope has expanded to include the Internet of Things. 

One of the greatest challenges in designing an IoT architecture is dealing with the 

heterogeneity of devices, software, and access methods. By developing a horizontal platform 

architecture, oneM2M is developing standards that allow interoperability at all levels of the 

IoT stack 

 

The Main Elements of the oneM2M IoT Architecture 
 

The oneM2M architecture divides IoT functions into three major domains: the application 

layer, the services layer, and the network layer 

 Applications layer: The oneM2M architecture gives major attention to connectivity 

between devices and their applications. This domain includes the application-layer 

protocols and attempts to standardize northbound API definitions for interaction with 

business intelligence (BI) systems. Applications tend to be industry-specific and have 

their own sets of data models, and thus they are shown as verticalentities. 

 

 Services layer: This layer is shown as a horizontal framework across the vertical 

industry applications. At this layer, horizontal modules include the physical network 

that the IoT applications run on, the underlying management protocols, and the 

hardware. Examples include backhaul communications via cellular, MPLS networks, 

VPNs, and so on. Riding on top is the common services layer. 

 
 Network layer: This is the communication domain for the IoT devices and endpoints. 

It includes the devices themselves and the communications network that links them. 
Embodiments of this communications infrastructure include wireless mesh 

technologies, such as IEEE 802.15.4, and wireless point-to-multipoint systems, such 

as IEEE 801.11ah. 
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The IoT World Forum (IoTWF) Standardized Architecture 
 

This publish a seven-layer IoT architectural reference model. 

 
 While various IoT reference models exist, the one put forth by the IoT World Forum 

offers a clean, simplified perspective on IoT and includes edge computing, data 

storage, and access. It provides a succinct way of visualizing IoT from a technical 

perspective. Each of the seven layers is broken down into specific functions, and 

security encompasses the entire model. 

 

 
 

Using this reference model, we are able to achieve the following: 

1. Decompose the IoT problem into smaller parts 

2. Identify different technologies at each layer and how they relate to one another 

3. Define a system in which different parts can be provided by different vendors 

4. Have a process of defining interfaces that leads to interoperability 

5. Define a tiered security model that is enforced at the transition points between levels 

 
Layer 1: Physical Devices and Controllers Layer 

The first layer of the IoT Reference Model is the physical devices and 

controllers layer. This layer is home to the ―things‖ in the Internet of Things, 

including the various endpoint devices and sensors that send and receive information. 

The size of these ―things‖ can range from almost microscopic sensors to giant 

machines in a factory. Their primary function is generating data and being capable of 

being queried and/or controlled over a network. 
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Layer 2: Connectivity Layer 

In the second layer of the IoT Reference Model, the focus is on connectivity. 

The most important function of this IoT layer is the reliable and timely transmission 

of data. More specifically, this includes transmissions between Layer 1 devices and 

the network and between the network and information processing that occurs at Layer 

3 (the edge computing layer). 

. 

 
IoT Reference Model Connectivity Layer Functions 

 
Layer 3: Edge Computing Layer 

Edge computing is the role of Layer 3. Edge computing is often referred to as 

the ―fog‖ layer and is discussed in the section ―Fog Computing,‖ later in this chapter. 

At this layer, the emphasis is on data reduction and converting network data flows 

into information that is ready for storage and processing by higher layers. One of the 

basic principles of this reference model is that information processing is initiated as 

early and as close to the edge of the network as possible 
 

 

IoT Reference Model Layer 3 Functions 

https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch02.html#ch02lev2sec12
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Another important function that occurs at Layer 3 is the evaluation of data to see if it 

can be filtered or aggregated before being sent to a higher layer. This also allows for 

data to be reformatted or decoded, making additional processing by other systems 

easier. Thus, a critical function is assessing the data to see if predefined thresholds are 

crossed and any action or alerts need to be sent. 

 
Upper Layers: Layers 4–7 

The upper layers deal with handling and processing the IoT data generated by 
the bottom layer. For the sake of completeness, Layers 4–7 of the IoT Reference 

Model are summarized in Table . 
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IT and OT Responsibilities in the IoT Reference Model 

An interesting aspect of visualizing an IoT architecture this way is that you can start to organize 

responsibilities along IT and OT lines. Figure illustrates a natural demarcation point between IT and 

OT in the IoT Reference Model framework. 

 

Figure:  IoT Reference Model Separation of IT and OT 

As demonstrated in Figure, IoT systems have to cross several boundaries beyond just the functional 

layers. The bottom of the stack is generally in the domain of OT. For an industry like oil and gas, this 

includes sensors and devices connected to pipelines, oil rigs, refinery machinery, 

and so on. The top of the stack is in the IT area and includes things like the servers, databases, and 

applications, all of which run on a part of the network controlled by IT. In the past, OT and IT have 

generally been very independent and had little need to even talk to each other. IoT is changing 

that paradigm. At the bottom, in the OT layers, the devices generate real-time data at their own rate—

sometimes vast amounts on a daily basis. Not only does this result in a huge amount of data transiting 

the IoT network, but the sheer volume of data suggests that applications at the top layer will be 

able to ingest that much data at the rate required. To meet this requirement, data has to be buffered or 

stored at certain points within the IoT stack. Layering data management in this way throughout the 

stack helps the top four layers handle data at their own speed. 

As a result, the real-time ―data in motion‖ close to the edge has to be organized and stored so that it 

becomes ―data at rest‖ for the applications in the IT tiers. The IT and OT organizations need to work 

together for overall data management. 
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Additional IoT Reference Models 

In addition to the two IoT reference models already presented, several other reference models exist. 

These models are endorsed by various organizations and standards bodies and are often specific to 

certain industries or IoT applications. Table  highlights these additional IoT reference models. 
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A SIMPLIFIED IOT ARCHITECTURE 
 

 
 

Simplified IoT Architecture 

THE CORE IOT FUNCTIONAL STACK 

IoT networks are built around the concept of ―things,‖ or smart objects performing 

functions and delivering new connected services. These objects are ―smart‖ because they use 
a combination of contextual information and configured goals to perform actions. 

 
From an architectural standpoint, several components have to work together for an IoT 

network to be operational: 
 

―Things‖ layer: 
Communications network layer 

Access network sublayer 

Gateways and backhaul network sublayer 

Network transport sublayer 

IoT network management sublayer 

Application and analytics layer 

The following sections examine these elements and help you architect your IoT 
communication network. 

 
Layer 1: Things: Sensors and Actuators Layer 

―Smart Objects: The ‗Things‘ in IoT,‖ provides more in-depth information about 

smart objects. From an architectural standpoint, the variety of smart object types, shapes, and 

needs drive the variety of IoT protocols and architectures. One architectural classification 

could be: 

    Battery-powered or power-connected: This classification is based on whether the 

object carries its own energy supply or receives continuous power from an external 

power source. 

     Mobile or static: This classification is based on whether the ―thing‖ should move or 

always stay at the same location. A sensor may be mobile because it is moved from 

one object to another or because it is attached to a movin 

       Low or high reporting frequency: This classification is based on how often the 

object should report monitored parameters. A rust sensor may report values once a 
month. A motion sensor may report acceleration several hundred times per second. 

https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch03.html#ch03
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   Simple or rich data: This classification is based on the quantity of data exchanged at 
each report cycle 

    Report range: This classification is based on the distance at which the gateway is 

located. For example, for your fitness band to communicate with your phone, it needs 

to be located a few meters away at most. 

    Object density per cell: This classification is based on the number of smart objects 

(with a similar need to communicate) over a given area, connected to the same 

gateway. 

Below figure provides some examples of applications matching the combination of mobility 

and throughput requirements. 

 

Example of Sensor Applications Based on Mobility and Throughput 



Internet of Things 18EC64 

Page 15 

 

 

Layer 2: Communications Network Layer 

Once you have determined the influence of the smart object form factor over its 
transmission capabilities (transmission range, data volume and frequency, sensor density and 
mobility), you are ready to connect the object and communicate. 

Compute and network assets used in IoT can be very different from those in IT environments. 

The difference in the physical form factors between devices used by IT and OT is obvious 

even to the most casual of observers. What typically drives this is the physical environment in 

which the devices are deployed. What may not be as inherently obvious, however, is their 

operational differences. The operational differences must be understood in order to apply the 

correct handling to secure the target assets. 

 
Access Network Sublayer 

There is a direct relationship between the IoT network technology you choose and the 

type of connectivity topology this technology allows. Each technology was designed with a 

certain number of use cases in mind (what to connect, where to connect, how much data to 

transport at what interval and over what distance). These use cases determined the frequency 

band that was expected to be most suitable, the frame structure matching the expected data 

pattern (packet size and communication intervals), and the possible topologies that these use 

cases illustrate. 

One key parameter determining the choice of access technology is the range between the 

smart object and the information collector. Figure 2-9 lists some access technologies you may 
encounter in the IoT world and the expected transmission distances. 

 
 

Access Technologies and Distances 

https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch02.html#ch02fig09
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 Range estimates are grouped by category names that illustrate the environment or the 

vertical where data collection over that range is expected. Common groups are as 

follows: 

PAN (personal area network): Scale of a few meters. This is the personal space around a 

person. A common wireless technology for this scale is Bluetooth. 

HAN (home area network): Scale of a few tens of meters. At this scale, common wireless 
technologies for IoT include ZigBee and Bluetooth Low Energy (BLE). 

NAN (neighborhood area network): Scale of a few hundreds of meters. The term NAN is 

often used to refer to a group of house units from which data is collected. 

FAN (field area network): Scale of several tens of meters to several hundred meters. FAN 

typically refers to an outdoor area larger than a single group of house units. The FAN is often 

seen as ―open space‖ (and therefore not secured and not controlled). 

LAN (local area network): Scale of up to 100 m. This term is very common in 

networking, and it is therefore also commonly used in the IoT space when standard 

networking technologies (such as Ethernet or IEEE 802.11) are used. 

 
 Similar ranges also do not mean similar topologies. Some technologies offer flexible 

connectivity structure to extend communication possibilities: 

Point-to-point topologies 

Point-to-multipoint 

 

Star and Clustered Star Topologies 
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Comparison of the main solutions from an architectural angle. 

Architectural Considerations for WiMAX and Cellular Technologies 

 
Layer 3: Applications and Analytics Layer 

Once connected to a network, your smart objects exchange information with other 

systems. As soon as your IoT network spans more than a few sensors, the power of the 

Internet of Things appears in the applications that make use of the information exchanged 

with the smart objects. 
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Analytics Versus Control Applications 

Multiple applications can help increase the efficiency of an IoT network. Each 

application collects data and provides a range of functions based on analyzing the collected 

data. It can be difficult to compare the features offered. From an architectural standpoint, one 

basic classification can be as follows: 

Analytics application: This type of application collects data from multiple smart objects, 

processes the collected data, and displays information resulting from the data that was 

processed. The display can be about any aspect of the IoT network, from historical reports, 

statistics, or trends to individual system states. The important aspect is that the application 

processes the data to convey a view of the network that cannot be obtained from solely 

looking at the information displayed by a single smart object. 

Control application: This type of application controls the behavior of the smart object or 

the behavior of an object related to the smart object. For example, a pressure sensor may be 

connected to a pump. A control application increases the pump speed when the connected 

sensor detects a drop in pressure. Control applications are very useful for controlling complex 

aspects of an IoT network with a logic that cannot be programmed inside a single IoT object, 

either because the configured changes are too complex to fit into the local system or because 

the configured changes rely on parameters that include elements outside the IoT object. 

 

Data Versus Network Analytics 

Analytics is a general term that describes processing information to make sense of collected 
data. In the world of IoT, a possible classification of the analytics function is as follows: 

Data analytics: This type of analytics processes the data collected by smart objects and 

combines it to provide an intelligent view related to the IoT system. At a very basic level, a 

dashboard can display an alarm when a weight sensor detects that a shelf is empty in a store. 

In a more complex case, temperature, pressure, wind, humidity, and light levels collected 

from thousands of sensors may be combined and then processed to determine the likelihood 

of a storm and its possible path . 

Network analytics: Most IoT systems are built around smart objects connected to the 

network. A loss or degradation in connectivity is likely to affect the efficiency of the system. 

Such a loss can have dramatic effects. For example, open mines use wireless networks to 

automatically pilot dump trucks. A lasting loss of connectivity may result in an accident or 

degradation of operations efficiency (automated dump trucks typically stop upon connectivity 

loss). On a more minor scale, loss of connectivity means that data stops being fed to your 

data analytics platform, and the system stops making intelligent analyses of the IoT system. 

 
Data Analytics Versus Business Benefits 

Data analytics is undoubtedly a field where the value of IoT is booming. Almost any object 

can be connected, and multiple types of sensors can be installed on a given object. Collecting 

and interpreting the data generated by these devices is where the value of IoT is realized. 

 

Smart Services 

 The ability to use IoT to improve operations is often termed ―smart services.‖ This 

term is generic, and in many cases the term is used but its meaning is often stretched 

to include one form of service or another where an additional level of intelligence is 

provided. 
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 Smart services can also be used to measure the efficiency of machines bydetecting 
machine output, speed, or other forms of usage evaluation. 

 
 Smart services can be integrated into an IoT system. For example, sensors can be 

integrated in a light bulb. A sensor can turn a light on or off based on the presence of 
a human in the room. 

 

 
IOT DATA MANAGEMENT AND COMPUTE STACK 

This model also has limitations. As data volume, the variety of objects connecting to 

the network, and the need for more efficiency increase, new requirements appear, and those 

requirements tend to bring the need for data analysis closer to the IoT system. These new 

requirements include the following: 

Minimizing latency: Milliseconds matter for many types of industrial systems, such as 

when you are trying to prevent manufacturing line shutdowns or restore electrical service. 

Analyzing data close to the device that collected the data can make a difference between 

averting disaster and a cascading system failure. 

Conserving network bandwidth: Offshore oil rigs generate 500 GB of data weekly. 

Commercial jets generate 10 TB for every 30 minutes of flight. It is not practical to transport 

vast amounts of data from thousands or hundreds of thousands of edge devices to the cloud. 

Nor is it necessary because many critical analyses do not require cloud-scale processing and 

storage. 

Increasing local efficiency: Collecting and securing data across a wide geographic area 

with different environmental conditions may not be useful. The environmental conditions in 

one area will trigger a local response independent from the conditions of another site 

hundreds of miles away. Analyzing both areas in the same cloud system may not be 

necessary for immediate efficiency. 

. 

The Traditional IT Cloud Computing Model 
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IoT systems function differently. Several data-related problems need to be addressed: 

Bandwidth in last-mile IoT networks is very limited. When dealing with thousands/millions 

of devices, available bandwidth may be on order of tens of Kbps per device or even less. 

Latency can be very high. Instead of dealing with latency in the milliseconds range, large 
IoT networks often introduce latency of hundreds to thousands of milliseconds. 

Network backhaul from the gateway can be unreliable and often depends on 3G/LTE or 

even satellite links. Backhaul links can also be expensive if a per-byte data usage model is 

necessary. 

The volume of data transmitted over the backhaul can be high, and much of the data may 
not really be that interesting (such as simple polling messages). 

Big data is getting bigger. The concept of storing and analyzing all sensor data in the cloud 

is impractical. The sheer volume of data generated makes real-time analysis and response to 

the data almost impossible. 

 
Fog Computing 

The solution to the challenges mentioned in the previous section is to distribute data 

management throughout the IoT system, as close to the edge of the IP network as possible. 

The best-known embodiment of edge services in IoT is fog computing. Any device with 

computing, storage, and network connectivity can be a fog node. Examples include industrial 

controllers, switches, routers, embedded servers, and IoT gateways. Analyzing IoT data close 

to where it is collected minimizes latency, offloads gigabytes of network traffic from the core 

network, and keeps sensitive data inside the local network. 

The IoT Data Management and Compute Stack with Fog Computing 
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Note 

Edge computing is also sometimes called ―mist‖ computing. If clouds exist in the sky, 

and fog sits near the ground, then mist is what actually sits on the ground. Thus, the concept 

of mist is to extend fog to the furthest point possible, right into the IoT endpoint device itself. 

Fog services are typically accomplished very close to the edge device, sitting as close 

to the IoT endpoints as possible. One significant advantage of this is that the fog node has 

contextual awareness of the sensors it is managing because of its geographic proximity to 

those sensors. For example, there might be a fog router on an oil derrick that is monitoring all 

the sensor activity at that location. Because the fog node is able to analyze information from 

all the sensors on that derrick, it can provide contextual analysis of the messages it is 

receiving and may decide to send back only the relevant information over the backhaul 

network to the cloud. In this way, it is performing distributed analytics such that the volume 

of data sent upstream is greatly reduced and is much more useful to application and analytics 

servers residing in the cloud. 

Fog applications are as diverse as the Internet of Things itself. What they have in 

common is data reduction—monitoring or analyzing real-time data from network-connected 

things and then initiating an action, such as locking a door, changing equipment settings, 

applying the brakes on a train, zooming a video camera, opening a valve in response to a 

pressure reading, creating a bar chart, or sending an alert to a technician to make a preventive 

repair. 

 
The defining characteristic of fog computing are as follows: 

Contextual location awareness and low latency: The fog node sits as close to the IoT 
endpoint as possible to deliver distributed computing. 

Geographic distribution: In sharp contrast to the more centralized cloud, the services and 

applications targeted by the fog nodes demand widely distributed deployments. 

Deployment near IoT endpoints: Fog nodes are typically deployed in the presence of a 

large number of IoT endpoints. For example, typical metering deployments often see 3000 to 
4000 nodes per gateway router, which also functions as the fog computing node. 

Wireless communication between the fog and the IoT endpoint: Although it is possible 

to connect wired nodes, the advantages of fog are greatest when dealing with a large number 

of endpoints, and wireless access is the easiest way to achieve such scale. 

Use for real-time interactions: Important fog applications involve real-time interactions 

rather than batch processing. Preprocessing of data in the fog nodes allows upper-layer 

applications to perform batch processing on a subset of the data. 

 
Edge Computing 

Fog computing solutions are being adopted by many industries, and efforts to develop 

distributed applications and analytics tools are being introduced at an accelerating pace. The 

natural place for a fog node is in the network device that sits closest to the IoT endpoints, and 

these nodes are typically spread throughout an IoT network 

 

The Hierarchy of Edge, Fog, and Cloud 

It is important to stress that edge or fog computing in no way replaces the cloud. 
Rather, they complement each other, and many use cases actually require strong cooperation 

between layers. In the same way that lower courts do not replace the supreme court of a 
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country, edge and fog computing layers simply act as a first line of   defense   for 

filtering, analyzing, and otherwise managing data endpoints. This saves the cloud from being 

queried by each and every node for each event. 
 

 

 

Distributed Compute and Data Management Across an IoT System 

 

 
 

From an architectural standpoint, fog nodes closest to the network edge receive the data from 

IoT devices. The fog IoT application then directs different types of data to the optimal place 

for analysis: 

The most time-sensitive data is analyzed on the edge or fog node closest to the things 

generating the data. 

Data that can wait seconds or minutes for action is passed along to an aggregation node for 

analysis and action. 

Data that is less time sensitive is sent to the cloud for historical analysis, big data analytics, 
and long-term storage. For example, each of thousands or hundreds of thousands of fog nodes 

might send periodic summaries of data to the cloud for historical analysis and storage. 

In summary, when architecting an IoT network, you should consider the amount of data to be 

analyzed and the time sensitivity of this data. Understanding these factors will help you 

decide whether cloud computing is enough or whether edge or fog computing would improve 

your system efficiency. Fog computing accelerates awareness and response to events by 

eliminating a round trip to the cloud for analysis. It avoids the need for costly bandwidth 

additions by offloading gigabytes of network traffic from the core network. It also protects 

sensitive IoT data by analyzing it inside company walls. 
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MODULE-2
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SMART OBJECTS 
Smart objects are any physical objects that contain embedded technology to sense and/or interact with 

their environment in a meaningful way by being interconnected and enabling communication among 

themselves or an external agent. 

Some of the fundamental building blocks of IoT networks are 

 Sensors

 Actuators

 Smart Objects

Sensors: 

 A sensor does exactly as its name indicates: It senses.

 A sensor measures some physical quantity and converts that measurement reading into a 

digital representation.

 That digital representation is typically passed to another device for transformation into useful 

data that can be consumed by intelligent devices or humans.
 Sensors are not limited to human-like sensory data.

 They are able to provide an extremely wide spectrum of rich and diverse measurement data 

with far greater precision than human senses.

 Sensors provide superhuman sensory capabilities.

 Sensors can be readily embedded in any physical objects that are easily connected to the 

Internet by wired or wireless networks, they can interpret their environment and make 

intelligent decisions.

Sensors have been grouped into different categories 

 Active or passive: Sensors can be categorized based on whether they produce an energy output 

and typically require an external power supply (active) or whether they simply receive energy and 

typically require no external power supply (passive).
 

 Invasive or non-invasive: Sensors can be categorized based on whether a sensor is part of the 

environment it is measuring (invasive) or external to it (non-invasive).
 

 Contact or no-contact: Sensors can be categorized based on whether they require physical 
contact with what they are measuring (contact) or not (no-contact).

 

 Absolute or relative: Sensors can be categorized based on whether they measure on an absolute 

scale (absolute) or based on a difference with a fixed or variable reference value (relative).
 

 Area of application: Sensors can be categorized based on the specific industry or vertical where 
they are being used.

 

 How sensors measure: Sensors can be categorized based on the physical mechanism used to 

measure sensory input (for example, thermoelectric, electrochemical, piezoresistive, optic, 

electric, fluid mechanic, photoelastic).

 What sensors measure: Sensors can be categorized based on their applications or what physical 

variables they measure.

The physical phenomenon a sensor is measuring is shown in Table-2.1 
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 A fascinating use case to highlight the power of sensors and IoT is in the area of precision 
agriculture (sometimes referred to as smart farming), which uses a variety of technical advances to 

improve the efficiency, sustainability, and profitability of traditional farming practices.

 This includes the use of GPS and satellite aerial imagery for determining field viability; robots for 

high-precision planting, harvesting, irrigation, and so on; and real-time analytics and artificial 

intelligence to predict optimal crop yield, weather impacts, and soil quality.

Different types of sensors in a smart phone is shown in figure 2.1 
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Figure 2.1: Sensors in a smart phone 

Actuators: 

 Actuators are natural complements to sensors.

 Figure 2.2 demonstrates the symmetry and complementary nature of these two types of 

devices.

 Sensors are designed to sense and measure practically any measurable variable in the physical 

world.

 They convert their measurements (typically analog) into electric signals or digital 

representations that can be consumed by an intelligent agent (a device or a human).

 Actuators, on the others hand, receive some type of control signal (commonly an electric 

signal or digital command) that triggers a physical effect, usually some type of motion, force, 

and so on.

 
 

 

Figure 2.2 : How Sensors and Actuators Interact with the Physical World 

Much like sensors, actuators also vary greatly in function, size, design, and so on. Some common 

ways that they can be classified include the following: 

 Type of motion: Actuators can be classified based on the type of motion they produce (for 

example, linear, rotary, one/two/three-axes).
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 Power: Actuators can be classified based on their power output (for example, high power, low 
power, micro power)

 Binary or continuous: Actuators can be classified based on the number of stable-state 

outputs.

 Area of application: Actuators can be classified based on the specific industry or vertical 

where they are used.

 Type of energy: Actuators can be classified based on their energy type.

 
Different types of Actuators are presented in Table -2.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table - 

2.2: Actuator Classification by Energy Type 

Micro-Electro-Mechanical Systems (MEMS) 

 Micro-electro-mechanical systems (MEMS referred to as micro-machines, can integrate and 
combine electric and mechanical elements, such as sensors and actuators, on a very small 

(millimeter or less) scale.

 The combination of tiny size, low cost, and the ability to mass produce makes MEMS an 

attractive option for a huge number of IoT applications.

Ex: Inkjet printers use micropump MEMS. Smart phones also use MEMS technologies for things like 
accelerometers and gyroscopes 

 
Smart Objects 
Smart objects are, quite simply, the building blocks of IoT. They are what transform everyday objects 

into a network of intelligent objects that are able to learn from and interact with their environment in a 

meaningful way. A smart object, is a device that has, at a minimum, the following four defining 

characteristics 

 Processing Unit: A smart object has some type of processing unit for acquiring data, 

processing and analyzing sensing information received by the sensor(s), coordinating control 

signals to any actuators, and controlling a variety of functions on the smart object, including 

the communication and power systems.

 Sensor(s) and /or actuator(s): A smart object is capable of interacting with the physical 

world through sensors and actuators. A smart object does not need to contain both sensors and 

actuators. In fact, a smart object can contain one or multiple sensors and/or actuators, 

depending upon the application.
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 Communication Device: The communication unit is responsible for connecting a smart 

object with other smart objects and the outside world (via the network). Communication 

devices for smart objects can be either wired or wireless.

 Power Source: Smart objects have components that need to be powered. Interestingly, the 

most significant power consumption usually comes from the communication unit of a smart 

object.

Trends in Smart Objects: 

The broad generalizations and trends impacting IoT are 

 Size is decreasing: Some smart objects are so small they are not even visible to the naked 

eye. This reduced size makes smart objects easier to embed in everyday objects.

 Power consumption is decreasing: The different hardware components of a smart object 

continually consume less power. Some battery-powered sensors last 10 or more years without 
battery replacement.

 Processing power is increasing: Processors are continually getting more powerful and 
smaller.

 Communication capabilities are improving: It‘s no big surprise that wireless speeds are 

continually increasing, but they are also increasing in range. IoT is driving the development of 

more and more specialized communication protocols covering a greater diversity of use cases 

and environments.

 Communication is being increasingly standardized: There is a strong push in the industry 
to develop open standards for IoT communication protocols. In addition, there are more and 

more open source efforts to advance IoT

Sensor Networks: 

 A sensor/actuator network (SANET), as the name suggests, is a network of sensors that sense 

and measure their environment and/or actuators that act on their environment.

 The sensors and/or actuators in a SANET are capable of communicating and cooperating in a 
productive manner.

 SANETs offer highly coordinated sensing and actuation capabilities.

 Smart homes are a type of SANET that display this coordination between distributed sensors 
and actuators.

 For example, smart homes can have temperature sensors that are strategically networked with 

heating, ventilation, and air-conditioning (HVAC) actuators. When a sensor detects a specified 

temperature, this can trigger an actuator to take action and heat or cool the home as needed.

The following are some advantages and disadvantages that a wireless-based solution offers: 

Advantages: 

 Greater deployment flexibility (especially in extreme environments or hard-to-reach places)

 Simpler scaling to a large number of nodes

 Lower implementation costs

 Easier long-term maintenance

 Effortless introduction of new sensor/actuator nodes

 Better equipped to handle dynamic/rapid topology changes

 

Disadvantages: 

 Potentially less secure (for example, hijacked access points)

 Typically, lower transmission speeds

 Greater level of impact/influence by environment
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Wireless Sensor Networks (WSNs) 

Wireless sensor networks are made up of wirelessly connected smart objects, which are sometimes 

referred to as motes. The following are some of the most significant limitations of the smart objects in 

WSNs: 

 Limited processing power

 Limited memory

 Lossy communication

 Limited transmission speeds

 Limited power

These limitations greatly influence how WSNs are designed, deployed, and utilized. Figure 2.3 below 

shows an example of such a data aggregation function in a WSN where temperature readings from a 

logical grouping of temperature sensors are aggregated as an average temperature reading. 

 

Figure 2.3 Data Aggregation in Wireless Sensor Networks 

 

These data aggregation techniques are helpful in reducing the amount of overall traffic (and energy) 

in WSNs with very large numbers of deployed smart objects. Wirelessly connected smart objects 

generally have one of the following two communication patterns: 

 Event-driven: Transmission of sensory information is triggered only when a smart object 
detects a particular event or predetermined threshold.

 Periodic: Transmission of sensory information occurs only at periodic intervals.

 
Communication Protocols for Wireless Sensor Networks: 

 

 Any communication protocol must be able to scale to a large number of nodes.

 Likewise, when selecting a communication protocol, you must carefully take into account the 

requirements of the specific application.

 Also consider any trade-offs the communication protocol offers between power consumption, 

maximum transmission speed, range, tolerance for packet loss, topology optimization, 

security, and so on.

 Sensors often produce large amounts of sensing and measurement data that needs to be 
processed.
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 This data can be processed locally by the nodes of a WSN or across zero or more hierarchical 
levels in IoT networks.

 IoT is one of those rare technologies that impacts all verticals and industries, which means 

standardization of communication protocols is a complicated task, requiring protocol 

definition across multiple layers of the stack, as well as a great deal of coordination across 

multiple standards development organizations.

 
Connecting smart objects 

The characteristics and attributes considered when selecting and dealing with connecting smart 

objects are 

1) Range: It defines how far does the signal need to be propagated? That is, what will be the area of 

coverage for a selected wireless technology? The below figure 2.4 shows the range considered 

Figure 2.4 Wireless Access Landscape 

 Short Range: 

o The classical wired example is a serial cable. 
o Wireless short-range technologies are often considered as an alternative to a serial 

cable, supporting tens of meters of maximum distance between two devices. 

o Examples of short-range wireless technologies are IEEE 802.15.1 Bluetooth and IEEE 
802.15.7 Visible Light Communications (VLC). 

o These short-range communication methods are found in only a minority of IoT 
installations. 

 Medium Range: 

o In the range of tens to hundreds of meters, many specifications and implementations 
are available. 

o The maximum distance is generally less than 1 mile between two devices. 
o  Examples of medium-range wireless technologies include IEEE 802.11 Wi-Fi, IEEE 

802.15.4, and 802.15.4g WPAN. 

o Wired technologies such as IEEE 802.3 Ethernet and IEEE 1901.2 
o Narrowband Power Line Communications (PLC) may also be classified as medium 

range, depending on their physical media characteristics. 
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 Long Range: 
 

o Distances greater than 1 mile between two devices require long-range technologies. 
Wireless examples are cellular (2G, 3G, 4G) and some applications of outdoor IEEE 

802.11 Wi-Fi and Low-Power Wide-Area (LPWA) technologies. 

o LPWA communications have the ability to communicate over a large area without 
consuming much power. 

o These technologies are therefore ideal for battery-powered IoT sensors. 
o Found mainly in industrial networks, IEEE 802.3 over optical fiber and IEEE 1901 

Broadband Power Line Communications are classified as long range but are not really 
considered IoT access technologies. 

2) Frequency Bands: 

 Radio spectrum is regulated by countries and/or organizations, such as the International 

Telecommunication Union (ITU) and the Federal Communications Commission (FCC). 

 These groups define the regulations and transmission requirements for various frequency 

bands. 

 For example, portions of the spectrum are allocated to types of telecommunications such as 

radio, television, military, and so on. 

 Focusing on IoT access technologies, the frequency bands leveraged by wireless 
communications are split between licensed and unlicensed bands. 

 Licensed spectrum is generally applicable to IoT long-range access technologies and allocated 

to communications infrastructures deployed by services providers, public services (for 
example, first responders, military), broadcasters, and utilities. 

 The ITU has also defined unlicensed spectrum for the industrial, scientific, and medical (ISM) 
portions of the radio bands. 

 These frequencies are used in many communications technologies for short-range devices 

(SRDs). 

 Unlicensed means that no guarantees or protections are offered in the ISM bands for device 

communications. 

 For IoT access, these are the most well-known ISM bands: 

 2.4 GHz band as used by IEEE 802.11b/g/n Wi-Fi 

 IEEE 802.15.1 Bluetooth 

 IEEE 802.15.4 WPAN 

 Unlicensed spectrum is usually simpler to deploy than licensed because it does not require a 
service provider. 

 Some communications within the ISM bands operate in the sub-GHz range. 

 Sub-GHz bands are used by protocols such as IEEE 802.15.4, 802.15.4g, and 802.11ah, and 
LPWA technologies such as LoRa and Sigfox. 

 The most well-known ranges are centered on 169 MHz, 433 MHz, 868 MHz, and 915 MHz. 

 The 868 MHz band is applicable to IoT access technologies such as IEEE 802.15.4 and 
802.15.4g, 802.11ah, and LoRaWAN. 

 
Power Consumption: 

 Battery-powered nodes bring much more flexibility to IoT devices. 

 These nodes are often classified by the required lifetimes of their batteries. 

 A powered node has a direct connection to a power source, and communications are usually 
not limited by power consumption criteria. 

 IoT wireless access technologies must address the needs of low power consumption and 

connectivity for battery-powered nodes. 
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 This has led to the evolution of a new wireless environment known as Low-Power Wide-Area 
(LPWA). 

 
Topology 

 Among the access technologies available for connecting IoT devices, three main topology 

schemes are dominant: star, mesh, and peer-to-peer. 

 For long-range and short-range technologies, a star topology is prevalent, as seen with 
cellular, LPWA, and Bluetooth networks. 

 Star topologies utilize a single central base station or controller to allow communications with 
endpoints. 

 For medium-range technologies, a star, peer-to-peer, or mesh topology is common. 

 Peer-to-peer topologies allow any device to communicate with any other device as long as 

they are in range of each other. 

 Peer-to-peer topologies enable more complex formations, such as a mesh networking 

topology. 

The figure 2.5 below represents the various topology. 
 

Figure 2.5 Star, Peer-to-Peer, and Mesh Topologies 

 The disadvantage of sub-GHz frequency bands is their lower rate of data delivery compared to 
higher frequencies. 

 Example: Indoor Wi-Fi deployments are mostly a set of nodes forming a star topology around 

their access points (APs). 

 Outdoor Wi-Fi may consist of a mesh topology for the backbone of APs, with nodes 

connecting to the APs in a star topology. 

 IEEE 802.15.4 and 802.15.4g and even wired IEEE 1901.2a PLC are generally deployed as a 

mesh topology. 

 Mesh topology requires the implementation of a Layer 2 forwarding protocol known as mesh- 

     under or a Layer 3 forwarding protocol referred to as mesh-over on each intermediate node. 
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Constrained Devices: 

Constrained nodes have limited resources that impact their networking feature set and capabilities. 

Constrained nodes can broken down into different classes such as shown in Table 2.3: 

Table 2.3 Classes of Constrained Nodes, as Defined by RFC 7228 

 Constrained-node networks are often referred to as low-power and lossy networks (LLNs). 

 Lossy networks indicates that network performance may suffer from interference and 
variability due to harsh radio environments. 

 Layer-1 and Layer-2 protocols that can be used for constrained-node networks must be 

evaluated in the context of the following characteristics for use-case applicability: data rate 

and throughput, latency and determinism, and overhead and payload. 

 The IoT access technologies developed for constrained nodes are optimized for low power 

consumption, but they are also limited in terms of data rate, which depends on the selected 

frequency band, and throughput. 

 The data rates available from IoT access technologies range from 100 bps with protocols such 
as Sigfox to tens of megabits per second with technologies such as LTE and IEEE 802.11ac. 

 Short-range technologies can also provide medium to high data rates that have enough 
throughput to connect a few endpoints. 

 On constrained networks, latency may range from a few milliseconds to seconds, and 

applications and protocol stacks must cope with these wide-ranging values. 

 For example, UDP at the transport layer is strongly recommended for IP endpoints 

communicating over LLNs 

 When considering constrained access network technologies, it is important to review the MAC 

payload size characteristics required by applications. 

 In addition, you should be aware of any requirements for IP. 
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 The minimum IPv6 MTU size is expected to be 1280 bytes. Therefore, the fragmentation of 
the IPv6 payload has to be considered by link layer access protocols with smaller MTUs. 

 Example: The payload size for IEEE 802.15.4 is 127 bytes and requires an IPv6 payload with 

a minimum MTU of 1280 bytes to be fragmented. 

 On the other hand, IEEE 802.15.4g enables payloads up to 2048 bytes, easing the support of 

the IPv6 minimum MTU of 1280 bytes. 

IoT Access Technologies 

 IEEE 802.15.4: 

 IEEE 802.15.4 is a wireless access technology for low-cost and low-data-rate devices 

that are powered or run on batteries. 

 This access technology enables easy installation using a compact protocol stack while 

remaining both simple and flexible. 

 IEEE 802.15.4 is commonly found in the following types of deployments: 

o Home and building automation 

o Automotive networks 

o Industrial wireless sensor networks 

o Interactive toys and remote controls 

 Criticisms of IEEE 802.15.4 often focus on its MAC reliability, unbounded latency, 

and susceptibility to interference and multipath fading. 

 Interference and multipath fading occur with IEEE 802.15.4 because it lacks a 
frequency-hopping technique. 

 
 Standardization and Alliances 

 IEEE 802.15.4 or IEEE 802.15 Task Group 4 defines low-data-rate PHY and MAC 

layer specifications for wireless personal area networks (WPAN). 

 The IEEE 802.15.4 PHY and MAC layers are the foundations for several networking 

protocol stacks. 

 These protocol stacks make use of 802.15.4 at the physical and link layer levels, but 

the upper layers are different. 

Some of the most well-known protocol stacks based on 802.15.4 are as shown in Table 2.4 
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 ZigBee: 

 
 Protocol Stacks Utilizing IEEE 802.15.4 

Table 

 It is an IoT solution for interconnecting smart objects. 

 ZigBee solutions are aimed at smart objects and sensors that have low bandwidth and low 

power needs. 

 The Zigbee specification has undergone several revisions. 

 In the 2006 revision, sets of commands and message types were introduced, and increased in 
number in the 2007 (called Zigbee pro) iteration, to achieve different functions for a device, 

such as metering, temperature, or lighting control. 

 These sets of commands and message types are called clusters. 

 Ultimately, these clusters from different functional domains or libraries form the building 
blocks of Zigbee application profiles. 

 Vendors implementing pre-defined Zigbee application profiles like Home Automation or 
Smart Energy can ensure interoperability between their products. 

 The main areas where ZigBee is the most well-known include automation for commercial, 

retail, and home applications and smart energy. 

 In the industrial and commercial automation space, ZigBee-based devices can handle various 

functions, from measuring temperature and humidity to tracking assets. 

 For home automation, ZigBee can control lighting, thermostats, and security functions. 

 ZigBee Smart Energy brings together a variety of interoperable products, such as smart 

meters, that can monitor and control the use and delivery of utilities, such as electricity and 

water. 

 The traditional ZigBee stack is illustrated in the below figure 2.6. 
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Figure 2.6 High-Level ZigBee Protocol Stack 
 

 The ZigBee network and security layer provides mechanisms for network startup, 

configuration, routing, and securing communications. This includes calculating routing paths 

in what is often a changing topology, discovering neighbors, and managing the routing tables 

as devices join for the first time. The network layer is also responsible for forming the 

appropriate topology, which is often a mesh but could be a star or tree as well. From a security 

perspective, ZigBee utilizes 802.15.4 for security at the MAC layer, using the Advanced 

Encryption Standard (AES) with a 128-bit key and also provides security at the network and 

application layers. 

 ZigBee is one of the most well-known protocols built on an IEEE 802.15.4 foundation. On top 

of the 802.15.4 PHY and MAC layers, ZigBee specifies its own network and security layer 

and application profiles. 

 
 ZigBee IP 

 ZigBee IP was created to embrace the open standards coming from the IETF‘s work on LLNs, 

such as IPv6, 6LoWPAN, and RPL They provide for low-bandwidth, low-power, and cost- 

effective communications when connecting smart objects. 

 ZigBee IP is a critical part of the Smart Energy (SE) Profile 2.0 specification from the ZigBee 

Alliance. SE 2.0 is aimed at smart metering and residential energy management systems. Any 

other applications that need a standards-based IoT stack can utilize Zigbee IP. The ZigBee IP 

stack is shown in below figure 2.7. 
 

 
 

Figure 2.7 ZigBee IP Protocol Stack 

 
 ZigBee IP supports 6LoWPAN as an adaptation layer. 

 ZigBee IP requires the support of 6LoWPAN‘s fragmentation and header compression 

schemes 

 At the network layer, all ZigBee IP nodes support IPv6, ICMPv6, and 6LoWPAN Neighbor 
Discovery (ND), and utilize RPL for the routing of packets across the mesh network. 

 

 802.15.4 Physical and MAC Layer: 

 

 The 802.15.4 standard supports an extensive number of PHY options that range from 2.4 

GHz to sub-GHz frequencies in ISM bands. 

 The original IEEE 802.15.4-2003 standard specified only three PHY options based on direct 

sequence spread spectrum (DSSS) modulation. 
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 DSSS is a modulation technique in which a signal is intentionally spread in the frequency 
domain, resulting in greater bandwidth. 

 The original physical layer transmission options were as follows: 

o 2.4 GHz, 16 channels, with a data rate of 250 kbps 

o 915 MHz, 10 channels, with a data rate of 40 kbps 

o 868 MHz, 1 channel, with a data rate of 20 kbps 

 IEEE 802.15.4-2006, 802.15.4-2011, and IEEE 802.15.4-2015 introduced additional PHY 

communication options, including the following: 
o OQPSK PHY: This is DSSS PHY, employing offset quadrature phase-shift keying 

(OQPSK) modulation. 

 OQPSK is a modulation technique that uses four unique bit values that are 

signaled by phase changes. 

 An offset function that is present during phase shifts allows data to be 

transmitted more reliably. 

o BPSK PHY: This is DSSS PHY, employing binary phase-shift keying (BPSK) 
modulation. 

 BPSK specifies two unique phase shifts as its data encoding scheme. 

o ASK PHY: This is parallel sequence spread spectrum (PSSS) PHY, employing 
amplitude shift keying (ASK) and BPSK modulation. 

 PSSS is an advanced encoding scheme that offers increased range, throughput, 

data rates, and signal integrity compared to DSSS. 

 ASK uses amplitude shifts instead of phase shifts to signal different bit values. 
 

 
Figure 2.8 IEEE 802.15.4 PHY Format 

 
 The PHY Header portion of the PHY frame is shown in Figure 2.8 is simply a frame length 

value.

 It lets the receiver know how much total data to expect in the PHY service data unit (PSDU) 
portion of the 802.4.15 PHY. The PSDU is the data field or payload.

 The IEEE 802.15.4 MAC layer manages access to the PHY channel by defining how devices in 
the same area will share the frequencies allocated.

 At this layer, the scheduling and routing of data frames are also coordinated.

 The 802.15.4 MAC layer performs the following tasks:

o Network beaconing for devices acting as coordinators (New devices use beacons to join an 
802.15.4 network) 

o PAN association and disassociation by a device 

o Device security 

o Reliable link communications between two peer MAC entities 
o The MAC layer achieves these tasks by using various predefined frame types. In fact, four 

types of MAC frames are specified in 802.15.4: 
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o Data frame: Handles all transfers of data 

o Beacon frame: Used in the transmission of beacons from a PAN coordinator 

o Acknowledgement frame: Confirms the successful reception of a frame 

o MAC command frame: Responsible for control communication between devices 

 Each of these four 802.15.4 MAC frame types follows the frame format shown in Figure 2.9. 

In Figure 2.9, notice that the MAC frame is carried as the PHY payload.

 The 802.15.4 MAC frame can be broken down into the MAC Header, MAC Payload, and MAC 
Footer fields.

 

Figure 2.9 IEEE 802.15.4 MAC Format 
 

 The MAC Header field is composed of the Frame Control, Sequence Number and the Addressing 

fields.

 The Frame Control field defines attributes such as frame type, addressing modes, and other 

control flags.

 The Sequence Number field indicates the sequence identifier for the frame.

 The Addressing field specifies the Source and Destination PAN Identifier fields as well as the 
Source and Destination Address fields.

 The MAC Payload field varies by individual frame type.

 The MAC Footer field is nothing more than a frame check sequence (FCS).

 An FCS is a calculation based on the data in the frame that is used by the receiving side to 
confirm the integrity of the data in the frame.

 

 
 Topology 

 IEEE 802.15.4–based networks can be built as star, peer-to-peer, or mesh topologies.

 Mesh networks tie together many nodes.

 This allows nodes that would be out of range if trying to communicate directly to leverage 

intermediary nodes to transfer communications.

 Every 802.15.4 PAN should be set up with a unique ID.

 All the nodes in the same 802.15.4 network should use the same PAN ID.

 Figure 2.10 shows an example of an 802.15.4 mesh network with a PAN ID of 1.

https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch04.html#ch04fig06
https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch04.html#ch04fig06
https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch04.html#ch04fig07


Internet of Things 18EC64 
 

 Page 39  

 

 
 

 
 

Figure 2.10: 802.15.4 Sample Mesh Network Topology 
 

 FFD (full-function devices) acts as a PAN coordinator to deliver services that allow other 

devices to associate and form a cell or PAN.

 FFD devices can communicate with any other devices, whereas RFD devices can 

communicate only with FFD devices.

 
 Security 

 The IEEE 802.15.4 specification uses Advanced Encryption Standard (AES) with a 128-bit 

key length as the base encryption algorithm for securing its data.

 In addition to encrypting the data, AES in 802.15.4 also validates the data that is sent.

 This is accomplished by a message integrity code (MIC), which is calculated for the entire 

frame using the same AES key that is used for encryption.

 The figure 2.11 below shows the IEEE 802.15.4 frame format at a high level, with the 

Security Enabled bit set and the Auxiliary Security Header field present.

 
  Figure 2.11:Frame Format with the Auxiliary Security Header Field for 802.15.4-2006 and Later Versions 
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  IEEE 802.15.4g and 802.15.4e 

 IEEE 802.15.4g-2012 is also an amendment to the IEEE 802.15.4-2011 standard, and just like 

802.15.4e-2012, it has been fully integrated into the core IEEE 802.15.4-2015 specification.

 802.15.4g seeks to optimize large outdoor wireless mesh networks for field area networks 
(FANs)

 This technology applies to IoT use cases such as the following:
o Distribution automation and industrial supervisory control and data acquisition 

(SCADA) environments for remote monitoring and control 

o Public lighting 

o Environmental wireless sensors in smart cities 

o Electrical vehicle charging stations 

o Smart parking meters 

o Microgrids 

o Renewable energy. 

 
 Standardization and Alliances: 

 802.15.4g-2012 and 802.15.4e-2012 are simply amendments to IEEE 802.15.4-2011. 
 Same IEEE 802.15 Task Group 4 standards body authors, maintains, and integrates them 

into the next release of the core specification. 

 To guarantee interoperability, the Wi-SUN Alliance was formed. 

 It defines communication profiles for smart utility and related networks. 
 These profiles are based on open standards, such as 802.15.4g-2012, 802.15.4e-2012, 

IPv6, 6LoWPAN, and UDP for the FAN profile. 

 The Wi-SUN Alliance performs the same function as the Wi-Fi Alliance and WiMAX 
Forum 

 
 Physical Layer: 

 In IEEE 802.15.4g-2012, the original IEEE 802.15.4 maximum PSDU or payload size of 127 

bytes was increased for the SUN PHY to 2047 bytes.

 This provides a better match for the greater packet sizes found in many upper-layer protocols.

 For example, the default IPv6 MTU setting is 1280 bytes. Fragmentation is no longer 

necessary at Layer 2 when IPv6 packets are transmitted over IEEE 802.15.4g MAC frames. 

Also, the error protection was improved in IEEE 802.15.4g by evolving the CRC from 16 to 

32 bits.

 The SUN PHY, as described in IEEE 802.15.4g-2012, supports multiple data rates in bands 

ranging from 169 MHz to 2.4 GHz.\

 Within these bands, data must be modulated onto the frequency using at least one of the 

following PHY mechanisms to be IEEE 802.15.4g compliant:

o Multi-Rate and Multi-Regional Frequency Shift Keying (MR-FSK): Offers good 
transmit power efficiency due to the constant envelope of the transmit signal 

o Multi-Rate and Multi-Regional Orthogonal Frequency Division Multiplexing 
(MR-OFDM): Provides higher data rates but may be too complex for low-cost and 
low-power devices 

o Multi-Rate and Multi-Regional Offset Quadrature Phase-Shift Keying (MR-O- 
QPSK):Shares the same characteristics of the IEEE 802.15.4-2006 O-QPSK PHY, 
making multi-mode systems more cost-effective and easier to design. 
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 MAC Layer: 

The following are some of the main enhancements to the MAC layer proposed by IEEE 802.15.4e- 

2012: 

 Time-Slotted Channel Hopping (TSCH):

 TSCH is an IEEE 802.15.4e-2012 MAC operation mode that works to guarantee media 

access and channel diversity. 

 Channel hopping, also known as frequency hopping, utilizes different channels for 

transmission at different times. 

 TSCH divides time into fixed time periods, or ―time slots,‖ which offer guaranteed 

bandwidth and predictable latency. 

 In a time, slot, one packet and its acknowledgement can be transmitted, increasing 

network capacity because multiple nodes can communicate in the same time slot, using 

different channels. 

 A number of time slots are defined as a ―slot frame,‖ which is regularly repeated to 

provide ―guaranteed access.‖ 

 The transmitter and receiver agree on the channels and the timing for switching 

between channels through the combination of a global time slot counter and a global 

channel hopping sequence list, as computed on each node to determine the channel of 

each time slot. 

 TSCH adds robustness in noisy environments and smoother coexistence with other 

wireless technologies, especially for industrial use cases. 

 Information elements:

 Information elements (IEs) allow for the exchange of information at the MAC layer in 

an extensible manner, either as header IEs (standardized) and/or payload IEs (private). 

 Specified in a tag, length, value (TLV) format, the IE field allows frames to carry 

additional metadata to support MAC layer services. 

 These services may include IEEE 802.15.9 key management, Wi-SUN 1.0 IEs to 

broadcast and unicast schedule timing information, and frequency hopping 

synchronization information for the 6TiSCH architecture. 

 Enhanced beacons (EBs):

 EBs extend the flexibility of IEEE 802.15.4 beacons to allow the construction of 

application-specific beacon content. 

 This is accomplished by including relevant IEs in EB frames. 
 Some IEs that may be found in EBs include network metrics, frequency hopping 

broadcast schedule, and PAN information version. 

 Enhanced beacon requests (EBRs):

 Like enhanced beacons, an enhanced beacon request (EBRs) also leverages IEs. 
 The IEs in EBRs allow the sender to selectively specify the request of information. 

Beacon responses are then limited to what was requested in the EBR. 

 For example, a device can query for a PAN that is allowing new devices to join or a 

PAN that supports a certain set of MAC/PHY capabilities. 

 Enhanced Acknowledgement:

 The Enhanced Acknowledgement frame allows for the integration of a frame counter 

for the frame being acknowledged. 

 This feature helps protect against certain attacks that occur when Acknowledgement 

frames are spoofed. 

 The 802.15.4e-2012 MAC amendment is quite often paired with the 802.15.4g-2012 PHY. 
Figure 2.11 details this format
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Figure 2.11: IEEE 802.15.4g/e MAC Frame Format 

 

 

 

 
 Topology: 

 Deployments of IEEE 802.15.4g-2012 are mostly based on a mesh topology. 
 A mesh topology allows deployments to be done in urban or rural areas, expanding the 

distance between nodes that can relay the traffic of other nodes. 

 Support for battery-powered nodes with a long lifecycle requires optimized Layer 2 

forwarding or Layer 3 routing protocol implementations. 

 This provides an extra level of complexity but is necessary in order to cope with sleeping 

battery-powered nodes. 
 

 Security: 

 Both IEEE 802.15.4g and 802.15.4e inherit their security attributes from the IEEE 802.15.4- 

2006 specification. 

 Therefore, encryption is provided by AES, with a 128-bit key. 

 In addition to the Auxiliary Security Header field initially defined in 802.15.4-2006, a secure 

acknowledgement and a secure Enhanced Beacon field complete the MAC layer security. 

 Figure 2.12 shows a high-level overview of the security associated with an IEEE 802.15.4e 

MAC frame. 
 

 
Figure 2.12: IEEE 802.15.4g/e MAC Layer Security 

 

 The MIC is a unique value that is calculated based on the frame contents. 

 The Security Header field denoted in Figure 2.12 is composed of the Auxiliary Security field 

and one or more Information Elements fields. 

https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch04.html#ch04fig10
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 Integration of the Information Elements fields allows for the adoption of additional security 

capabilities, such as the IEEE 802.15.9 Key Management Protocol (KMP) specification. 

 KMP provides a means for establishing keys for robust datagram security. Without key 

management support, weak keys are often the result, leaving the security system open to 

attack. 
 

  IEEE 1901.2a 

 IEEE 1901.2a-2013 is a wired technology that is an update to the original IEEE 1901.2 

specification 

 This is a standard for Narrowband Power Line Communication (NB-PLC). 

 NB-PLC leverages a narrowband spectrum for low power, long range, and resistance to 

interference over the same wires that carry electric power. 

 NB-PLC is often found in use cases such as the following: 

  Smart metering: NB-PLC can be used to automate the reading of utility meters, such as 

electric, gas, and water meters. This is true particularly in Europe, where PLC is the preferred 

technology for utilities deploying smart meter solutions. 

 Distribution automation: NB-PLC can be used for distribution automation, which involves 
monitoring and controlling all the devices in the power grid. 

 Public lighting: A common use for NB-PLC is with public lighting—the lights found in cities 
and along streets, highways, and public areas such as parks. 

 Electric vehicle charging stations: NB-PLC can be used for electric vehicle charging stations, 

where the batteries of electric vehicles can be recharged. 

 Microgrids: NB-PLC can be used for microgrids, local energy grids that can disconnect from 
the traditional grid and operate independently. 

 Renewable energy: NB-PLC can be used in renewable energy applications, such as solar, 
wind power, hydroelectric, and geothermal heat. 

 

 Standardization and Alliances 

 The IEEE 1901.2 working group published the IEEE 1901.2a specification in 

November 2013. 

 IEEE 1901.2 working group only looked at standardizing the NB-PLC PHY and MAC 

layers independently of the upper layers. 

 Using the 802.15.4e Information Element fields eases support for IEEE 802.15.9 key 

management. 

 The HomePlug Alliance was one of the main industry organizations that drove the 

promotion and certification of PLC technologies, with IEEE 1901.2a being part of its 
HomePlug Netricity program. 

 

 Physical Layer 

 NB-PLC is defined for frequency bands from 3 to 500 kHz. 
 Figure 2.13 shows the various frequency bands for NB-PLC. The most well-known 

bands are regulated by CENELEC (Comité Européen de Normalisation Électro 

technique) and the FCC (Federal Communications Commission). 

 The two ARIB frequency bands are ARIB 1, 37.5–117.1875 kHz, and ARIB 2, 

154.6875–403.125 kHz. 
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Figure 2.13 NB-PLC Frequency Bands 

 

 With IEEE 1901.2a, the data throughput rate has the ability to dynamically change, 

depending on the modulation type and tone map. 

 One major difference between IEEE 802.15.4g/e and IEEE 1901.2a is the full 

integration of different types of modulation and tone maps by a single PHY layer in 

the IEEE 1901.2a specification. 

 IEEE 802.15.4g/e doesn‘t really define a multi-PHY management algorithm. 
 The PHY payload size can change dynamically, based on channel conditions in IEEE 

1901.2a. 

 Therefore, MAC sublayer segmentation is implemented. If the size of the MAC 

payload is too large to fit within one PHY service data unit (PSDU), the MAC payload 

is partitioned into smaller segments. 

 MAC payload segmentation is done by dividing the MAC payload into multiple 

smaller amounts of data (segments), based on PSDU size. 

 The segmentation may require the addition of padding bytes to the last payload 

segment so that the final MPDU fills the PSDU. 

 

 MAC Layer: 

 The MAC frame format of IEEE 1901.2a is based on the IEEE 802.15.4 MAC frame 

but integrates the latest IEEE 802.15.4e-2012 amendment, which enables key features 

to be supported. 

 One of the key components brought from 802.15.4e to IEEE 1901.2a is information 
elements. 

 Figure 2.14 provides a overview of the general MAC frame format for IEEE 1901.2. 

 
Figure 2.14: General MAC Frame Format for IEEE 1901.2 

 IEEE 1901.2 has a Segment Control field. 

 This field handles the segmentation or fragmentation of upper-layer packets with sizes 

larger than what can be carried in the MAC protocol data unit (MPDU). 

 

 Topology: 

 Use cases and deployment topologies for IEEE 1901.2a are tied to the physical power 

lines. 
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 As with wireless technologies, signal propagation is limited by factors such as noise, 

interference, distortion, and attenuation. 

 These factors become more prevalent with distance, so most NB-PLC deployments use 

some sort of mesh topology. 

 Mesh networks offer the advantage of devices relaying the traffic of other devices so 

longer distances can be segmented. 

 
 

 Security: 

 IEEE 1901.2a security offers similar features to IEEE 802.15.4g. Encryption and 

authentication are performed using AES. I 

 In addition, IEEE 1901.2a aligns with 802.15.4g in its ability to support the IEEE 

802.15.9 Key Management Protocol. 

 The Security Enabled bit in the Frame Control field should be set in all MAC frames 

carrying segments of an encrypted frame. 

 If data encryption is required, it should be done before packet segmentation. During 

packet encryption, the Segment Control field should not be included in the input to the 

encryption algorithm. 

 On the receiver side, the data decryption is done after packet reassembly. 
 When security is enabled, the MAC payload is composed of the ciphered payload and 

the message integrity code (MIC) authentication tag for non-segmented payloads. 

 If the payload is segmented, the MIC is part of the last packet (segment) only. 
 The MIC authentication is computed using only information from the MHR of the 

frame carrying the first segment. 

 
 

 Competitive Technologies: 

 G3-PLC (now ITU G.9903) 

 PRIME (now ITU G.9904). 
 

Both of these technologies were initially developed to address a single use case: smart 

metering deployment in Europe over the CENELEC A band. 
 

 

     IEEE 802.11ah 

 In unconstrained networks, IEEE 802.11 Wi-Fi is certainly the most successfully deployed 

wireless technology. 

 Wi-Fi lacks sub-GHz support for better signal penetration, low power for battery-powered 

nodes, and the ability to support a large number of devices. 

 Hence the IEEE 802.11 working group launched a task group named IEEE 802.11ah to 
specify a sub-GHz version of Wi-Fi. 

 
Three main use cases are identified for IEEE 802.11ah: 

 Sensors and meters covering a smart grid: Meter to pole, environmental/agricultural 

monitoring, industrial process sensors, indoor healthcare system and fitness sensors, home 

and building automation sensors. 

 Backhaul aggregation of industrial sensors and meter data: Potentially connecting 
IEEE 802.15.4g subnetworks 

 Extended range Wi-Fi: For outdoor extended-range hotspot or cellular traffic offloading 

when distances already covered by IEEE 802.11a/b/g/n/ac are not good enough. 
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 Standardization and Alliances 

 In July 2010, the IEEE 802.11 working group decided to work on an ―industrial Wi-Fi‖ 

and created the IEEE 802.11ah group. 

 The 802.11ah specification would operate in unlicensed sub-GHz frequency bands, similar 

to IEEE 802.15.4 and other LPWA technologies. 

 For the 802.11ah standard, the Wi-Fi Alliance defined a new brand called Wi-Fi HaLow. 

 It is similar to the word ―hello‖ but it is pronounced ―hay-low.‖ 

 
 

 Physical Layer 

 IEEE 802.11ah essentially provides an additional 802.11 physical layer operating in 
unlicensed sub-GHz bands. 

 Various countries and regions use the following bands for IEEE 802.11ah: 868–868.6 

MHz for EMEAR, 902–928 MHz and associated subsets for North America and Asia- 

Pacific regions, and 314–316 MHz, 430–434 MHz, 470–510 MHz, and 779–787 MHz for 

China. 

 Based on OFDM modulation, IEEE 802.11ah uses channels of 2, 4, 8, or 16 MHz. 

 Ex: At a data rate of 100 kbps, the outdoor transmission range for IEEE 802.11ah is 
expected to be 0.62 mile. 

 

 
 MAC Layer 

 The IEEE 802.11ah MAC layer is optimized to support the new sub-GHz Wi-Fi PHY while 

providing low power consumption and the ability to support a larger number of endpoints. 

 Enhancements and features specified by IEEE 802.11ah for the  MAC layer include  the 

following: 

o Number of devices: Has been scaled up to 8192 per access point. 

o MAC header: Has been shortened to allow more efficient communication. 

o Null data packet (NDP) support: 
 Is extended to cover several control and management frames.

 Relevant information is concentrated in the PHY header and the additional 

overhead associated with decoding the MAC header and data payload is 

avoided.

o Grouping and sectorization: 

 Enables an AP to use sector antennas and also group stations (distributing a 
group ID).

 In combination with RAW and TWT, this mechanism reduces contention in 

large cells with many clients by restricting which group, in which sector, can 

contend during which time window.

o Restricted access window (RAW): 

 Is a control algorithm that avoids simultaneous transmissions when many 
devices are present and provides fair access to the wireless network.

 By providing more efficient access to the medium, additional power savings for 

battery-powered devices can be achieved, and collisions are reduced.

o Target wake time (TWT): 

 Reduces energy consumption by permitting an access point to define times 
when a device can access the network.

 This allows devices to enter a low-power state until their TWT time arrives.
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 It also reduces the probability of collisions in large cells with many clients.
o Speed frame exchange: 

 Enables an AP and endpoint to exchange frames during a reserved transmit 

opportunity (TXOP).

 This reduces contention on the medium, minimizes the number of frame 

exchanges to improve channel efficiency, and extends battery life by keeping 

awake times short.

 Topology 

 While IEEE 802.11ah is deployed as a star topology, it includes a simple hops relay 

operation to extend its range. 

 This relay operation can be combined with a higher transmission rate or modulation and 

coding scheme (MCS). 

 This means that a higher transmit rate is used by relay devices talking directly to the 

access point. 

 The transmit rate reduces as you move further from the access point via relay clients. 

 Sectorization is a technique that involves partitioning the coverage area into several 
sectors to get reduced contention within a certain sector. 

 This technique is useful for limiting collisions in cells that have many clients. 

 This technique is also often necessary when the coverage area of 802.11ah access points is 

large, and interference from neighbouring access points is problematic. 

 Figure 2.15 shows an example of 802.11ah sectorization. 

Figure 2.15 :IEEE 802.11ah Sectorization 

 
 Security 

 Similar to IEEE 802.11 specifications 

 
 

 Competitive Technologies 

 Competitive technologies to IEEE 802.11ah are IEEE 802.15.4 and IEEE 

802.15.4e 
 

 

          LoRaWAN: 

     It is an unlicensed-band LPWA(Low-Power Wide-Area) technology.  
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 Standardization and Alliances 

 Optimized for long-range, two-way communications and low power consumption, the 
technology evolved from Layer 1 to a broader scope through the creation of the LoRa 

Alliance. 

 The LoRa Alliance quickly achieved industry support and currently has hundreds of members. 

 LoRa Alliance uses the term LoRaWAN to refer to its architecture and its specifications that 
describe end-to-end LoRaWAN communications and protocols. 

 Figure 2.16 provides a high-level overview of the LoRaWAN layers. 
 
 

 

Figure 2.16 LoRaWAN Layers 

 
 Physical Layer 

 LoRaWAN 1.0.2 regional specifications describe the use of the main unlicensed sub-GHz 

frequency bands of 433 MHz, 779–787 MHz, 863–870 MHz, and 902–928 MHz, as well as 

regional profiles for a subset of the 902–928 MHz bandwidth. 

 For example, Australia utilizes 915–928 MHz frequency bands, while South Korea uses 920– 

923 MHz and Japan uses 920–928 MHz. 

 A LoRa gateway is deployed as the center hub of a star network architecture. 

 It uses multiple transceivers and channels and can demodulate multiple channels at once or 

even demodulate multiple signals on the same channel simultaneously. 

 LoRa gateways serve as a transparent bridge relaying data between endpoints, and the 

endpoints use a single-hop wireless connection to communicate with one or many gateways. 

 The data rate in LoRaWAN varies depending on the frequency bands and adaptive data rate 

(ADR). 

 ADR is an algorithm that manages the data rate and radio signal for each endpoint. 

 The ADR algorithm ensures that packets are delivered at the best data rate possible and that 
network performance is both optimal and scalable. 

 Endpoints close to the gateways with good signal values transmit with the highest data rate, 

which enables a shorter transmission time over the wireless network, and the lowest transmit 

power. 

 An important feature of LoRa is its ability to handle various data rates via the spreading 
factor. 

 Devices with a low spreading factor (SF) achieve less distance in their communications but 

transmit at faster speeds, resulting in less airtime. A higher SF provides slower transmission 

rates but achieves a higher reliability at longer distances. 
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 MAC Layer 

 
 

 The LoRaWAN specification documents three classes of LoRaWAN devices: 

o Class A: 
 This class is the default implementation. 

 Optimized for battery-powered nodes, it allows bidirectional 

communications, where a given node is able to receive downstream traffic 

after transmitting. 

 Two receive windows are available after each transmission. 

o Class B: 

 This class was designated ―experimental‖ in LoRaWAN 1.0.1 until it can 

be better defined. 

 A Class B node or endpoint should get additional receive windows 

compared to Class A, but gateways must be synchronized through a 

beaconing process. 

o Class C: 
 This class is particularly adapted for powered nodes. 
 This classification enables a node to be continuously listening by keeping 

its receive window open when not transmitting. 

 LoRaWAN messages, either uplink or downlink, have a PHY payload composed of a 1-byte 

MAC header, a variable-byte MAC payload, and a MIC that is 4 bytes in length. 

 The MAC payload size depends on the frequency band and the data rate, ranging from 59 to 

230 bytes for the 863–870 MHz band and 19 to 250 bytes for the 902–928 MHz band. 

 Figure 2.17 shows a high-level LoRaWAN MAC frame format. 
 

 

Figure 2.17: High-Level LoRaWAN MAC Frame Format 

 
 In version 1.0.x, LoRaWAN utilizes six MAC message types 

o Join request : over-the-air (OTA) activation and joining the network. 

o Join accept messages: over-the-air (OTA) activation and joining the network. 

o Unconfirmed data up/down message : End device does not need to acknowledge 

o Confirmed data up/down message : A message that must be acknowledged 

o Uplink messages: These messages are sent from endpoints to the network server and 

are relayed by one or more LoRaWAN gateways 

o Downlink messages: These messages flow from the network server to a single 

endpoint and are relayed by only a single gateway. 

 LoRaWAN endpoints are uniquely addressable through a variety of methods. 

 An endpoint can have a global end device ID or DevEUI represented as an IEEE EUI-64 

address. 

 An endpoint can have a global application ID or AppEUI represented as an IEEE EUI-64 

address that uniquely identifies the application provider, such as the owner, of the end device. 

 In a LoRaWAN network, endpoints are also known by their end device address, known as a 

DevAddr, a 32-bit address. 

https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch04.html#ch04fig16
https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch04.html#ch04fig16
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 The 7 most significant bits are the network identifier (NwkID), which identifies the 
LoRaWAN network. 

 The 25 least significant bits are used as the network  address (NwkAddr) to identify the 

endpoint in the network. 

 
 Topology 

 LoRaWAN topology is often described as a ―star of stars‖ topology. 

 The infrastructure consists of endpoints exchanging packets through gateways acting as 

bridges, with a central LoRaWAN network server. 

 Gateways connect to the backend network using standard IP connections, and endpoints 

communicate directly with one or more gateways. 

 
Figure 2.18: LoRaWAN Architecture 

 

 In the figure 2.18 LoRaWAN endpoints transport their selected application data over the 

LoRaWAN MAC layer on top of one of the supported PHY layer frequency bands. 

 LoRaWAN gateways act as bridges that relay between endpoints and the network servers. 

 Multiple gateways can receive and transport the same packets. When duplicate packets are 

received, de-duplication is a function of the network server. 

 The LoRaWAN network server manages the data rate and radio frequency (RF) of each 

endpoint through the adaptive data rate (ADR) algorithm. 

 ADR is a key component of the network scalability, performance, and battery life of the 

endpoints. 

 

 Security: 

 LoRaWAN endpoints must implement two layers of security, protecting communications and 

data privacy across the network. 

 Security in a LoRaWAN deployment applies to different components of the architecture as 
shown in figure 2.19 
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Figure 2.19: LoRaWAN Security 

 

 The first layer, called ―network security‖ but applied at the MAC layer, guarantees the 
authentication of the endpoints by the LoRaWAN network server. 

 Also, it protects LoRaWAN packets by performing encryption based on AES. 

 Each endpoint implements a network session key (NwkSKey), used by both itself and the 

LoRaWAN network server. 

 The NwkSKey ensures data integrity through computing and checking the MIC of every data 

message as well as encrypting and decrypting MAC-only data message payloads. 

 The second layer is an application session key (AppSKey), which performs encryption and 

decryption functions between the endpoint and its application server. 

 Furthermore, it computes and checks the application-level MIC, if included. 

 This ensures that the LoRaWAN service provider does not have access to the application 
payload if it is not allowed that access. 

 Endpoints receive their AES-128 application key (AppKey) from the application owner. 

 This key is most likely derived from an application-specific root key exclusively known to and 

under the control of the application provider. 

 LoRaWAN endpoints attached to a LoRaWAN network must get registered and authenticated. 

This can be achieved through one of the two join mechanisms: 

o Activation by personalization (ABP): 

 Endpoints don‘t need to run a join procedure as their individual details, 

including DevAddr and the NwkSKey and AppSKey session keys, are 

preconfigured and stored in the end device. 

 This same information is registered in the LoRaWAN netwrk server. 

o Over-the-air activation (OTAA): 

 Endpoints are allowed to dynamically join a particular LoRaWAN network 
after successfully going through a join procedure. 

 The join procedure must be done every time a session context is renewed. 

 During the join process, which involves the sending and receiving of MAC 

layer join request and join accept messages, the node establishes its credentials 

with a LoRaWAN network server, exchanging its globally unique DevEUI, 

AppEUI, and AppKey. 
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 The AppKey is then used to derive the session NwkSKey and AppSKey keys. 
 

 

   NB-IoT and Other LTE Variations: 

 Because the new LTE-M device category was not sufficiently close to LPWA capabilities, 

in 2015 3GPP approved a proposal to standardize a new narrowband radio access 

technology called Narrowband IoT (NB-IoT). 

 NB-IoT specifically addresses the requirements of a massive number of low-throughput 

devices, low device power consumption, improved indoor coverage, and optimized 

network architecture. 

   LTE Cat 0 

 The first enhancements to better support IoT devices in 3GPP occurred in LTE Release 12. 

 A new user equipment (UE) category, Category 0, was added, with devices running at a 

maximum data rate of 1 Mbps. 

 Category 0 includes important characteristics to be supported by both the network and end 
devices These Cat 0 characteristics include the following: 

 Power saving mode (PSM): 

 This new device status minimizes energy consumption. Energy consumption is expected to 

be lower with PSM than with existing idle mode. PSM is defined as being similar to 

―powered off‖ mode, but the device stays registered with the network. 

 Half-duplex mode: This mode reduces the cost and complexity of a device‘s 

implementation because a duplex filter is not needed. Most IoT endpoints are sensors that 

send low amounts of data that do not have a full-duplex communication requirement. 
 

   LTE-M 
 

 

 Following LTE Cat 0, the next step in making the licensed spectrum more supportive of IoT 
devices was the introduction of the LTE-M category for 3GPP LTE Release 13. 

 These are the main characteristics of the LTE-M category in Release 13: 

o Lower receiver bandwidth: Bandwidth has been lowered to 1.4 MHz versus the usual 20 
MHz. This further simplifies the LTE endpoint. 

o Lower data rate: Data is around 200 kbps for LTE-M, compared to 1 Mbps for Cat 0. 
o Half-duplex mode: Just as with Cat 0, LTE-M offers a half-duplex mode that decreases 

node complexity and cost. 

o Enhanced discontinuous reception (eDRX): 

 This capability increases from seconds to minutes the amount of time an endpoint 

can ―sleep‖ between paging cycles. 

  A paging cycle is a periodic check-in with the network. This extended ―sleep‖ 

time between paging cycles extends the battery lifetime for an endpoint 

significantly. 
 

   NB-IoT 
 

 

 The work on NB-IoT started with multiple proposals pushed by the involved vendors, 

including the following: 

o Extended Coverage GSM (EC-GSM), Ericsson proposal 
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o Narrowband GSM (N-GSM), Nokia proposal 

o Narrowband M2M (NB-M2M), Huawei/Neul proposal 
o Narrowband OFDMA (orthogonal frequency-division multiple access), Qualcomm 

proposal 

o Narrowband Cellular IoT (NB-CIoT), combined proposal of NB-M2M and NB- 
OFDMA 

o Narrowband LTE (NB-LTE), Alcatel-Lucent, Ericsson, and Nokia proposal 

o Cooperative Ultra Narrowband (C-UNB), Sigfox proposal 

 Three modes of operation are applicable to NB-IoT: 
o Standalone: A GSM carrier is used as an NB-IoT carrier, enabling reuse of 900 MHz 

or 1800 MHz. 

o In-band: 
o Part of an LTE carrier frequency band is allocated for use as an NB-IoT 

frequency. 

o The service provider typically makes this allocation, and IoT devices are 
configured accordingly. 

o Guard band: An NB-IoT carrier is between the LTE or WCDMA bands. This 
requires coexistence between LTE and NB-IoT bands. 

Figure 2.20: NB-IoT Deployment Options 

 In an LTE network, resource blocks are defined with an effective bandwidth of 180 kHz, 

while on NB-IoT, tone or subcarriers replace the LTE resource blocks. 

 NB-IoT operates in half-duplex frequency-division duplexing (FDD) mode with a maximum 

data rate uplink of 60 kbps and downlink of 30 kbps. 
 

   Topology 

 NB-IoT is defined with a link budget of 164 dB. 

Main Characteristics of Access Technologies is given in Table 2.5 
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Table 2.5 : Characteristics of Access Technologies 
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 THE BUSINESS CASE FOR IP 

 Data flowing from or to “things” is consumed, controlled, or monitored by data center servers 

either in the cloud or in locations that may be distributed or centralized.  

 Dedicated applications are then run over virtualized or traditional operating systems or on 

network edge platforms (for ex-ample, fog computing). 

  The system solutions combining various physical and data link layers call for an architectural 

approach with a common layer(s) independent from the lower (connectivity) and/or upper 

(application) layers. This is how and why the Internet Protocol (IP) suite started playing a key 

architectural role in the early 1990s. IP was not only preferred in the IT markets but also for the 

OT environment. 

 

 The Key Advantages of Internet Protocol 

1) Open and standards-based: Operational technologies have often been delivered as turn key 

features by vendors who may have optimized the communication through closed and 

proprietary networking solutions. 

2) Versatile: A large spectrum of access technologies is available to offer connectivity of 

“things” in the last mile. Additional protocols and technologies are also used to transport IoT 

data through backhaul links and in the data center.  

3) Ubiquitous: All recent operating system releases, from general purpose computers and 

servers to lightweight embedded systems (TinyOS, Contiki, and so on), have an integrated 

dual (IPv4 and IPv6) IP stack  that gets enhanced over time.  

4) Scalable: As the common protocol of the Internet, IP has been massively deployed and tested 

for robust scalability.  

5) Manageable and highly secure: Communications infrastructure requires appropriate 

management and security capabilities for proper operations. Well-known network and 

security management tools are easily leveraged with an IP network layer.  

6) Stable and resilient: IP has a large and well-established know-ledge base and, more 

importantly, it has been used for years in critical infrastructures, such as financial and defense 

networks. 

7)  Consumers’ market adoption: When developing IoT solutions and products targeting the 

consumer market, vendors know that consumers access to applications and devices will occur 

predominantly over broad-band and mobile wireless infrastructure.  
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8) The innovation factor: The past two decades have largely established the adoption of IP as a 

factor for increased innovation. IP is the underlying protocol for applications ranging from 

file transfer and e-mail to the World Wide Web, e-commerce, social networking, mobility, 

and more. IP is a standard  based protocol that is ubiquitous, scalable, versatile, and stable 

 

 Adoption or Adaptation of the Internet Protocol 

 

 The use of numerous network layer protocols in addition to IP is often a point of 

contention between computer networking experts.  

 Adaptation means application layered gateways must be implemented to ensure the 

translation between non-IP and IP layer 

 

 Adoption involves replacing all non-IP layers with their IP layer counter parts, 

simplifying the deployment model and operations. 

 Supervisory control and data acquisition (SCADA) applications are typical examples of 

vertical market deployments that operate both the IP adaptation model and the adoption 

model.  

 We should consider the following factors when trying to determine which model is best 

suited for last-mile connectivity:  

1) Bidirectional versus unidirectional data flow: While bidirectional communications are 

generally expected, some last-mile technologies offer optimization for unidirectional 

communication. 

 For example: different classes of IoT devices, as defined in RFC 7228 

 If there is only one-way communication to upload data to an application, then it is not 

possible to download new software or firmware to the devices. This makes integrating 

new features and bug and security fixes more difficult.  

2) Overhead for last-mile communications paths: IP adoption implies a layered 

architecture with a per-packet overhead that varies depending on the IP version. This 

same consideration applies to control plane traffic that is run over IP for low-bandwidth, 

last-mile links. Routing protocol and other verbose network services may either not be 

required or call for optimization.  

3) Data flow model: One benefit of the IP adoption model is the end-to-end nature of 

communications. Any node can easily exchange data with any other node in a network, 
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although security, privacy, and other factors may put controls and limits on the “end-to-

end” concept.  

4) Network diversity: One of the drawbacks of the adaptation model is a general 

dependency on single PHY and MAC layers. For example, ZigBee devices must only be 

deployed in ZigBee network islands.  A deployment must consider which applications 

have to run on the gateway connecting these islands and the rest of the world. Integration 

and coexistence of new physical and MAC layers or new applications impact how 

deployment and operations have to be planned. This is not a relevant consideration for 

the adoption model. 

THE NEED FOR OPTIMIZATION 

The Internet of Things will largely be built on the Internet Protocol suite. However, challenges still exist 

for IP in IoT solutions. In addition to coping with the integration of non-IP devices, we may need to deal 

with the limits at the device and network levels that IoT often imposes. Therefore, optimizations are 

needed at various layers of the IP stack to handle the restrictions that are present in IoT networks. 

 Constrained Nodes 

              Depending on its functions in a network a “thing” architecture may or may not offer similar    

characteristics compared to a generic PC or server in an IT environment. 

          IoT constrained nodes can be classified as follows:  

 Devices that are very constrained in resources, may communicate infrequently to transmit a 

few bytes, and may have limited security and management capabilities: This drives the need 

for the IP adaptation model, where nodes communicate through gateways and proxies.  

 Devices with enough power and capacities to implement a stripped-down IP stack or non-IP 

stack: In this case, you may implement either an optimized IP stack and directly communicate 

with application servers (adoption model) or go for an IP or non-IP stack and communicate 

through gateways and proxies (adaptation model).  

 Devices that are similar to generic PCs in terms of computing and power resources but have 

constrained networking capacities, such as bandwidth: These nodes usually implement a full 

IP stack(adoption model), but network design and application behaviors must cope with the 

bandwidth constraints. 
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 Constrained Networks 

 Network bandwidth capacity was restrained due to technical limitations. Connections often 

depended on low-speed modems for transferring data.  

 Constrained networks have unique characteristics and requirements. In contrast with typical IP 

networks, where highly stable and fast links are available, constrained networks are limited by 

low-power, low-bandwidth links (wireless and wired).  

 They operate between a few kbps and a few hundred kbps and may utilize a star, mesh, or 

combined network topologies, ensuring proper operations. 

 Control plane traffic must also be kept at a minimum; otherwise, it consumes the bandwidth that 

is needed by the data traffic.  

 The power consumption in battery-powered nodes must be considered. Any failure or verbose 

control plane protocol may reduce the lifetime of the batteries. 

 Constrained nodes and networks pose major challenges for IoT connectivity in the last mile. This 

in turn has led various standards organizations to work on optimizing protocols for IoT.  

 

 

 IP Versions 

 

 The IETF (The Internet Engineering Task Force) has been working on transitioning the Internet 

from IP version 4 to IP version 6.  

 The main driving force has been the lack of address space in IPv4 as the Internet has grown. IPv6 

has a much larger range of addresses that should not be exhausted for the foreseeable future. 

. The following are some of the main factors applicable to IPv4 and IPv6 support in an IoT solution:  

 Application Protocol: IoT devices implementing Ethernet or Wi-Fi interfaces can communicate 

over both IPv4 and IPv6, but the application protocol may dictate the choice of the IP version. 

 Cellular Provider and Technology: IoT devices with cellular modems are dependent on the 

generation of the cellular technology as well as the data services offered by the provider 

 Serial Communications: Many legacy devices in certain industries, such as manufacturing and 

utilities, communicate through serial lines. Data is transferred using either proprietary or 

standards-based protocols 

 IPv6 Adaptation Layer: IPv6-only adaptation layers for some physical and data link layers for 

recently standardized IoT protocols support only IPv6. While the most common physical and data 

link layers (Ether-net, Wi-Fi, and so on) specify adaptation layers for both versions, newer 
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technologies, such as IEEE 802.15.4 (Wireless Personal Area Network),IEEE 1901.2, and ITU 

G.9903 (Narrowband Power Line Communications). 

OPTIMIZING IP FOR IOT 

 The Internet Protocol is key for a successful Internet of Things, constrained nodes and 

constrained networks mandate optimization at various layers and on multiple protocols of the IP 

architecture

 

 Figure: Optimizing IP for IOT using an Adaptation Layer 

 From 6LoWPAN to 6Lo 

 

 In the IP architecture, the transport of IP packets over any given Layer 1(PHY) and Layer 

2 (MAC) protocol must be defined and documented. The model for packaging IP into 

lower-layer protocols is often referred to as an adaptation layer. 

 The main examples of adaptation layers optimized for constrained nodes or “things” are 

the ones under the 6LoWPAN working group and its successor, the 6Lo working group. 

 The initial focus of the 6LoWPAN working group was to optimize the transmission of 

IPv6 packets over constrained networks such as IEEE 802.15.4. 
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Figure: 6LOWPAN Header Stack 

 

The above figure shows the sub-headers related to compression, fragmentation and mesh addressing. 

 

 Header Compression 

 

 IPv6 header compression for 6LoWPAN was defined initially in RFC 4944and 

subsequently updated by RFC 6282 

 Note that header compression for 6LoWPAN is only defined for an IPv6header and not 

IPv4 

 6LoWPAN header compression is stateless, and conceptually it is not too complicated. 

 A number of factors affect the amount of compression, such as implementation of RFC 

4944 versus RFC 6922, whether UDP is included, and various IPv6 addressing cases 
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 Figure: 6LOWPAN Header Compression 

 At the top of Figure we can see a 6LoWPAN frame without any header compression 

enabled: The full 40-byte IPv6 header and 8-byte UDP header are visible. The 

6LoWPAN header is only a single byte in this case. Notice that uncompressed IPv6 and 

UDP headers leave only 53 bytes of data payload out of the 127-byte maximum frame 

size in the case of IEEE802.15.4. 

 The bottom half of Figure shows a frame where header compression has been enabled for 

a best-case scenario. UDP has been reduced in half, to 4 bytes from 8. The compressed 

40 byte IPv6 header is put in the 2bytes header section. Most importantly, the header 

compression has allowed the payload to more than double, from 53 bytes to 108 bytes, 

which is obviously much more efficient. 

 

 Fragmentation 

 

 The maximum transmission unit (MTU) for an IPv6 network must be atleast 1280 

bytes. The term MTU defines the size of the largest protocol data unit that can be 

passed 

 The fragment header utilized by 6LoWPAN is composed of three primary fields: 

Datagram Size (total size of un-fragmented payload), Datagram Tag(identifies set 
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of fragments), and Datagram Offset(indicates how many fragments are 

remaining).  

 The 6LoWPAN fragmentation header field itself uses a unique bit value to 

identify that the subsequent fields behind it are fragment fields 

 The first fragmentation header for an IPv6 payload being only 4 bytes long. The 

remainder of the fragments have a 5-byte header field 

 

 

 Mesh Addressing 

 The purpose of the 6LoWPAN mesh addressing function is to forward packets 

over multiple hops.  

 Three fields are defined for this header: Hop Limit, Source Address, and 

Destination Address.  

 The hop limit for mesh addressing also provides an upper limit on how many 

times the frame can be forwarded. Each hop decrements this value by 1 as it is 

forwarded. Once the value hits 0, it is dropped and no longer forwarded. 

 The Source Address and Destination Address fields for mesh addressing are IEEE 

802.15.4 addresses indicating the endpoints of an IP hop. 
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 Mesh Under versus Mesh Over Routing  

 For network technologies such as IEEE 802.15.4, IEEE 802.15.4g, and IEEE 1901.2a 

that support mesh topologies and operate at the physical and data link layers, two main options 

exist for establishing reachability and forwarding packets. With the first option, mesh-under, the 

routing of packets is handled at the 6LoWPAN adaptation layer. The other option, known as 

“mesh-over” or “route-over,” utilizes IP routing for getting packets to their destination. 

 6TiSCH 

 Time-Slotted Channel Hopping (TSCH), is an add-on to the Media Access Control 

(MAC) portion of the IEEE 802.15.4 standard, with direct inheritance from other 

standards, such as Wireless HART and ISA100.11a. 

 Devices implementing IEEE 802.15.4e TSCH communicate by following a Time 

Division Multiple Access (TDMA) schedule. 

 

Figure: Location of 6TiSCH’S 6 TOP Sublayer 
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 Schedules in 6TiSCH are broken down into cells. A cell is simply a single element in the 

TSCH schedule that can be allocated for unidirectional or bidirectional communications 

between specific nodes. Nodes only transmit when the schedule dictates that their cell is 

open for communication.  

 The 6TiSCH architecture defines four schedule management mechanisms 

 

 Static scheduling: All nodes in the constrained network share a fixed schedule. 

Cells are shared, and nodes contend for slot access in a slotted aloha manner. 

Slotted aloha is a basic protocol for sending data using time slot boundaries 

when communicating over a shared medium. Static scheduling is a simple 

scheduling mechanism that can be used upon initial implementation or as a 

fallback in the case of network malfunction. The drawback with static scheduling 

is that nodes may expect a packet at any cell in the schedule. Therefore, energy is 

wasted idly listening across all cells.  

 Neighbor-to-neighbor scheduling: A schedule is established that correlates 

with the observed number of transmissions between nodes. Cells in this schedule 

can be added or deleted as traffic requirements and bandwidth needs change.  

 Remote monitoring and scheduling management: Time slots and other 

resource allocation are handled by a management entity that can be multiple hops 

away. The scheduling mechanism provides quite a bit of flexibility and control in 

allocating cells for communication between nodes.  

 Hop-by-hop scheduling: A node reserves a path to a destination node multiple 

hops away by requesting the allocation of cells in a schedule at each intermediate 

node hop in the path. 

  

 There are three 6TiSCH forwarding models:  

 

 Track Forwarding (TF): This is the simplest and fastest forwarding model. A 

“track” in this model is a unidirectional path between a source and a destination. This 
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track is constructed by pairing bundles of receive cells in a schedule with a bundle of 

receive cells set to transmit.  

 Fragment forwarding (FF): This model takes advantage of 6LoWPAN 

fragmentation to build a Layer 2 forwarding table. The 6LoWPAN sublayer learns the 

next-hop selection of this first fragment, which is then applied to all subsequent 

fragments of that packet. Otherwise, IPv6 packets undergo hop-by-hop reassembly. 

This increases latency and can be power- and CPU-intensive for a constrained node.  

 IPv6 Forwarding (6F): This model forwards traffic based on its IPv6 routing table. 

Flows of packets should be prioritized by traditional QoS (quality of service) and 

RED (random early detection) operations. QoS is a classification scheme for flows 

based on their priority, and RED is a common congestion avoidance mechanism. 

 

 RPL 

 

 The new distance-vector routing protocol was named the IPv6 Routing Protocol for 

Low   Power and Lossy Networks (RPL).  

        The RPL specification was published as RFC 6550 by the RoLL. 

 

 In an RPL network, each node acts as a router and becomes part of a mesh network.  

Routing is performed at the IP layer. Each node examines every received IPv6 packet 

and determines the next-hop destination based on the information contained in the 

IPv6 header 

 To cope with the constraints of computing and memory that are common 

characteristics of constrained nodes, the protocol defines two modes:  

 Storing mode: All nodes contain the full routing table of the RPL do-main. Every 

node knows how to directly reach every other node.  

 Non-storing mode: Only the border router(s) of the RPL domain contain the full 

routing table. All other nodes in the domain only maintain their list of parents and 

use this as a list of default routes toward the border router.  
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RPL is based on the concept of a directed acyclic graph (DAG). A DAG is a directed 

graph where no cycles exist.  

 

 

 

 Figure: Direct Acrylic Graph and DODAG 

A basic RPL process involves building a destination-oriented directed acyclic graph (DODAG). 

A DODAG is a DAG rooted to one destination. In RPL, this destination occurs at a border router 

known as the DODAG root. 

Figure compares a DAG and a DODAG. We can see that that a DAG has multiple roots, whereas 

the DODAG has just one. 

In a DODAG, each node maintains up to three parents that provide a path to the root. Typically, 

one of these parents is the preferred parent, which means it is the preferred next hop for upward 

routes toward the root. 
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Figure: RPL overview 

 Upward routes in RPL are discovered and configured using DAG Information Object 

(DIO) messages. 

 The information in DIO messages determines parents and the best path to the DODAG 

root. 

 Destination Advertisement Object (DAO) message. DAO messages allow nodes to 

inform their parents of their presence and reach ability to descendants. 

 An objective function (OF) defines how metrics are used to select routes and establish a 

node’s rank. 

 The rank is a rough approximation of how “close” a node is to the root and helps avoid 

routing loops and the count-to-infinity problem.  

 Specific network layer headers are defined for datagrams being forwarded within an RPL 

domain. 

 RFC 6554 specifies the Source Routing Header (SRH) for use between RPL routers. A 

border router or DODAG root inserts the SRH when specifying a source route to deliver 

datagrams to nodes downstream in the mesh network 

 RPL defines a large and flexible set of new metrics and constraints for routing in RFC 

6551.  Some of the RPL routing metrics and constraints defined in RFC6551 include the 

following: 
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 Expected Transmission Count (ETX):  Assigns a discrete value to the number of 

transmissions a node expects to make to deliver a packet.  

 Hop Count: Tracks the number of nodes traversed in a path. Typically, a path with a 

lower hop count is chosen over a path with a higher hop count.  

 Latency: Varies depending on power conservation. Paths with a lower latency are 

preferred.  

 Link Quality Level: Measures the reliability of a link by taking into account packet error 

rates caused by factors such as signal attenuation and interference.  

 Link Color: Allows manual influence of routing by administratively setting values to 

make a link more or less desirable. These values can be either statically or dynamically 

adjusted for specific traffic types.  

 Node State and Attribute: Identifies nodes that function as traffic aggregators and nodes 

that are being impacted by high workloads. High workloads could be indicative of nodes 

that have incurred high CPU or low memory states. Naturally, nodes that are aggregators 

are preferred over nodes experiencing high workloads.  

 Node Energy: Avoids nodes with low power, so a battery-powered node that is running 

out of energy can be avoided and the life of that node and the network can be prolonged.  

 Throughput: Provides the amount of throughput for a node link. Of-ten, nodes 

conserving power use lower throughput. This metric allows the prioritization of paths 

with higher throughput. 

Authentication and Encryption on Constrained Nodes 

IETF has mentioned two security working groups: ACE and DICE. 

 ACE 

 Like the RoLL working group, the Authentication and Authorization for Constrained 

Environments (ACE) working group is tasked with evaluating the applicability of existing 

authentication and authorization protocols and documenting their suitability for certain 

constrained-environment use cases.  
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DICE 

The DTLS in Constrained Environments (DICE) working group focuses on implementing the 

DTLS transport layer security protocol in these environments. The first task of the DICE 

working group is to define an optimized DTLS profile for constrained nodes. 

PROFILES AND COMPLIANCES 

The Internet Protocol suite for smart objects involves a collection of protocols and options that 

must work in coordination with lower and upper layers. Therefore, profile definitions, 

certifications, and promotion by alliances can help implementers develop solutions that 

guarantee interoperability and/or inter-changeability of devices. 

Some of the main industry organizations working on profile definitions and certifications for IoT 

constrained nodes and networks.  

 Internet Protocol for Smart objects (IPSO) Alliance: 

Established in 2008, the Internet Protocol for Smart Objects (IPSO) Alliance has had its 

objective evolve over years. The alliance initially focused on promoting IP as the premier 

solution for smart objects communications. The IPSO Alliance does not define technologies, as 

that is the role of the IETF and other standard organizations, but it documents the use of IP-based 

technologies for various IoT use cases and participates in educating the industry.  

 Wi-SUN Alliance 

The Wi-SUN Alliance is an example of efforts from the industry to define a 

communication profile that applies to specific physical and data link layer protocols.  

 Thread 

A group of companies involved with smart object solutions for consumers created the 

Thread Group. This group has defined an IPv6-based wireless profile that provides the 

best way to connect more than 250 devices into a low-power, wireless mesh network 

 

 IPv6 Ready Logo 

The IPv6 Ready Logo program has established conformance and inter operability testing 

programs with the intent of increasing user confidence when implementing IPv6. The 
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IPv6 Core and specific IPv6 components, such as DHCP, IPsec, and customer edge router 

certifications, are in place.  

 

CHAPTER2: APPLICATION PROTOCOLS FOR IOT 

 

THE TRASNPORT LAYER 

IoT networks which supports TCP/IP architecture uses two main protocols in transport layer. 

 

Transmission Control Protocol (TCP): This connection-oriented protocol requires a session to 

get established between the source and destination before exchanging data.  

User Datagram Protocol (UDP): With this connectionless protocol, data can be quickly sent 

between source and destination—but with no guarantee of delivery.  

 

TCP is the main protocol used at the transport layer. This is largely due to its inherent 

characteristics, such as its ability to transport large volumes of data into smaller sets of packets. 

In addition, it ensures reassembly in a correct sequence, flow control and window adjustment, 

and retransmission of lost packets. These benefits occur with the cost of overhead per packet and 

per session, potentially impacting overall packet per second performances and latency 

 

 UDP is most often used in the context of network services, such as Domain Name System 

(DNS), Network Time Protocol (NTP), Simple Network Management Protocol (SNMP), and 

Dynamic Host Control Protocol (DHCP), or for real-time data traffic, including voice and video 

over IP. In these cases, performance and latency are more import-ant than packet retransmissions 

because re-sending a lost voice or video packet does not add value. When the reception of 

packets must be guaranteed error free, the application layer protocol takes care of that function. 

 

Use of TCP in constrained IOT platform and high data rate environments is highly challenging. 
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IOT APPLICATION TRANSPORT METHODS 

The different types of IoT application protocols have various means for transporting these 

protocols across a network. The following categories of IoT application protocols and their 

transport methods are considered. 

 Application layer protocol not present 

 Supervisory control and data acquisition (SCADA) 

 Generic web-based protocols  

 IoT application layer protocols 

 Application layer protocol not present 

 IETF RFC 7228 devices defined as class 0send or receive only a few bytes of data. Class 

0 devices are usually simple smart objects that are severely constrained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: IOT Broker 

In the figure, the different kinds of temperature sensors from different manufacturers are used. 

These sensors will report temperature data in varying formats. If we increase the number of 

sensors upto thousands in the application. The interpreting the received temperature in different 

formats becomes complex. The solution to this problem is to use IOT Broker. 
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An IoT data broker is a piece of middleware that standardizes sensor output into a common 

format that can then be retrieved by authorized applications. 

In the figure, Sensors X, Y, and Z are all temperature sensors, but their output is encoded 

differently. The IoT data broker understands the different formats in which the temperature is 

encoded and is therefore able to decode this data into a common, standardized format. 

Applications A, B and C can access this temperature data without having to deal with decoding 

multiple temperature data formats. 

 Supervisory control and data acquisition (SCADA) 

 Combined with the fact that IP is the default standard for computer networking in 

general, older protocols that connected sensors and actuators have evolved and adapted them to 

utilize IP. 

At a high level, SCADA systems collect sensor data and telemetry from re-mote devices, while 

also providing the ability to control them. Used in today’s networks, SCADA systems allow 

global, real-time, data-driven decisions to be made about how to improve business processes 

 Adapting SCADA for IP 

In the 1990s, the rapid adoption of Ethernet networks in the industrial world led to the 

evolution of SCADA application layer protocols. 

To further facilitate the support of legacy industrial protocols over IP net-works, protocol 

specifications were updated and published, documenting the use of IP for each protocol. 
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Figure: Protocol Stack for Transporting Serial DNP3(Distributed Network protocol) 

 Like many of the other SCADA protocols, DNP3 is based on a master/slave 

relationship. The term master in this case refers to what is typically a powerful 

computer located in the control center of a utility, and a slave is a remote device with 

computing resources found in a location such as a substation. DNP3 refers to slaves 

specifically as outstations. 

 Outstations monitor and collect data from devices that indicate their state, such as 

whether a circuit breaker is on or off, and take measurements, including voltage, 

current, temperature, and so on. 

 Connection management links the DNP3 layers with the IP layers in addition to the 

configuration parameters and methods necessary for implementing the network 

connection. 

 The DNP3 end points or devices are not aware of the underlying IP transport that is 

occurring. 

 The master side initiates connections by performing a TCP active open. The 

outstation listens for a connection request by performing a TCP passive open. 

 Dual endpoint is defined as processes that can both listen for connection requests and 

perform an active open on the channel if required. 

 Keepalive messages are implemented as DNP3 data link layer status requests. If a 

response is not received to a keepalive message, the connection is deemed broken, 

and the appropriate action is taken. 

 

 SCADA Protocol Translation 
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Figure: DNP3 translation 

 

 Figure shows two serially connected DNP3 RTUs and two master applications 

supporting DNP3 over IP that control and pull data from the RTUs. 

 The IoT gateway in this figure performs a protocol translation function that enables 

communication between the RTUs and servers, despite the fact that a serial 

connection is present on one side and an IP connection is used on the other. 

 By running protocol translation, the IoT gateway connected to the RTUs in Figure is 

implementing a computing function close to the edge of the network. Adding 

computing functions close to the edge helps scale distributed intelligence in IoT 

networks. 

 

 SCADA Transport over LLNs with MAP-T 

 

 

 

 

 

 

Figure: DNP3 Protocol over 6LOWPAn Networks with MAP-T 

 The above figure shows a scenario in which a legacy endpoint is connected across an 

LLN (Low Power and Lossy Network) running 6LoWPAN (IPv6 over Low Power 

Wireless Personal Area Network) to an IP-capable SCADA server. 

 The legacy endpoint could be running various industrial and SCADA proto-cols 

including DNP3/IP, Modbus/TCP, or IEC 60870-5-104. 
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 In this case the legacy devices and the SCADA server support only IPv4 and IPv6 is 

being used for connectivity to the endpoint. 

 6LoWPAN is a standardized protocol designed for constrained networks, but it only 

supports IPv6. 

 In this situation, the end devices, the endpoints, and the SCADA server support only 

IPv4, but the network in the middle supports only IPv6. 

 The solution to this problem is to use the protocol known as MAP-T 

 The IPv4 endpoint on the left side is connected to a Customer Premise Equipment 

(CPE) device. The MAP-T CPE device has anIPv6 connection to the RPL mesh. On 

the right side, a SCADA server with native IPv4 support connects to a MAP-T border 

gateway. The MAP-TCPE device and MAP-T border gateway are thus responsible for 

the MAP-T conversion from IPv4 to IPv6. 

 

 

 Generic Web-Based Protocols 

 Web based protocols have become common in consumer and enterprise applications 

and services. Therefore, it makes sense to try to use these protocols when developing 

IoT applications, services, and devices in order to ease the integration of data and 

devices from prototyping to production. 

  The HTTP/HTTPS client/server model serves as the foundation for the World Wide 

Web. Recent evolutions of embedded web server software with advanced features are 

now implemented with very little memory 

 Interactions between real-time communication tools powering collaborative 

applications, such as voice and video, instant messaging, chat rooms, and IoT devices, 

are also emerging. 

 This is driving the need for simpler communication systems between people and IoT 

devices. One protocol that addresses this need is Extensible Messaging and Presence 

Protocol (XMPP). 

 

 IoT Application Layer Protocols 
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 When considering constrained networks and/or a large-scale deployment of 

constrained nodes, verbose web-based and data model protocols, may be too 

heavy for IoT applications.  

 Two of the most popular protocols are MQTT and CoAP. 

 

 

 

 

 

 

 

 

 

 

Figure: Example of a High-Level IoT Protocol Stack for CoAP and MQTT 

In the above figure, CoAP and MQTT are naturally at the top of this sample IoT stack, 

based on an IEEE 802.15.4 mesh network. 

 

 CoAP 

 Constrained Application Protocol (CoAP) resulted from the IETF Con-strained 

RESTful Environments (CoRE) working group’s efforts to de-velop a generic 

framework for resource-oriented applications targeting constrained nodes and 

networks. 

 The CoAP framework defines simple and flexible ways to manipulate sensors and 

actuators for data or device management. 

 

 The IETF CoRE working group has published multiple standards-track 

specifications for CoAP, including the following: 

 

RFC 6690: Constrained RESTful Environments (CoRE) Link Format 

RFC 7252: The Constrained Application Protocol (CoAP) 
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RFC 7641: Observing Resources in the Constrained Application Protocol (CoAP) 

RFC 7959: Block-Wise Transfers in the Constrained Application Protocol (CoAP) 

RFC 8075: Guidelines for Mapping Implementations: HTTP to the Constrained 

Application Protocol (CoAP). 

 

 

 

 

 

 

 

 

 

 

Figure: CoAP Message Format 

In the above figure, the CoAP message format is relatively simple and flexible. It allows 

CoAP to deliver low overhead, which is critical for constrained networks, while also 

being easy to parse and process for con-strained devices. 
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Table: CoAP Message Fields 

 

 

 

 

 

 

Figure: CoAP Reliable Transmission Example 

Figure shows a utility operations center on the left, acting as the CoAP client, with the CoAP 

server being a temperature sensor on the right of the figure. The communication between the 

client and server uses a CoAP message ID of 0x47. The CoAP Message ID ensures reliability 

and is used to detect duplicate messages. 

 Message Queuing Telemetry Transport (MQTT) 

 At the end of the 1990s, engineers from IBM and Arcom (acquired in2006 by 

Eurotech) were looking for a reliable, lightweight, and cost-effective protocol to 

monitor and control a large number of sensors and their data from a central server 

location. 

 They have introduced a client/server and publish/ subscriber framework based on 

the TCP/IP architecture. 
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 An MQTT client can act as a publisher to send data (or resource information) to 

an MQTT server acting as an MQTT message broker. 

 

 

 

 

 The above figure shows the MQTT Publish/Subscribe framework  

 The MQTT client on the left side of figure is a temperature (Temp) and relative 

humidity (RH) sensor that publishes its Temp/RH data.  

 The MQTT server (or message broker) accepts the net-work connection along 

with application messages, such as Temp/RH data, from the publishers. It also 

handles the subscription and unsubscription process and pushes the application 

data to MQTT clients acting as subscribers. 

 The application on the right side of figure is an MQTT client that is a subscriber 

to the Temp/RH data being generated by the publisher or sensor on the left. 

 MQTT control packets run over a TCP transport using port 1883. TCP ensures an 

ordered, lossless stream of bytes between the MQTT client and the MQTT server. 

 MQTT is a lightweight protocol because each control packet consists of a2-byte 

fixed header with optional variable header fields and optional pay-load. 
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Figure: MQTT message format 

 Compared to the CoAP message format in, MQTT contains a smaller header of 2 

bytes compared to 4 bytes for CoAP. The first MQTT field in the header is 

Message Type, which identifies the kind of MQTT packet within a message. 

Fourteen different types of control packets are specified in MQTT version 3.1.1. 

Each of them has a unique value that is coded into the Message Type field. Note 

that values 0and 15 are reserved. MQTT message types are summarized in the 

below Table 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table: MQTT Message Types 

 The next field in the MQTT header is DUP (Duplication Flag). This flag, when set, 

allows the client to notate that the packet has been sent previously, but an 

acknowledgement was not received. 

 The QoS header field allows for the selection of three different QoS levels. These are 

discussed in more detail later in this chapter. 

 The next field is the Retain flag. Only found in a PUBLISH message. The Retain flag 

notifies the server to hold onto the message data. This allows new subscribers to instantly 
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receive the last known value without having to wait for the next update from the 

publisher. 

 The last mandatory field in the MQTT message header is Remaining Length. This field 

specifies the number of bytes in the MQTT packet following this field. 

 MQTT sessions between each client and server consist of four phases: session 

establishment, authentication, data exchange, and session termination. Each client 

connecting to a server has a unique client ID. 

 The MQTT protocol offers three levels of quality of service (QoS) 

 QoS 0: This is a best-effort and unacknowledged data service referred to as “at most 

once” delivery. The publisher sends its message one time to a server, which transmits it 

once to the subscribers. No response is sent by the receiver, and no retry is performed by 

the sender. The message arrives at the receiver either once or not at all. 

 

 QoS 1: This QoS level ensures that the message delivery between the publisher and 

server and then between the server and subscribers occurs at least once. In PUBLISH and 

PUBACK packets, a packet identifier is included in the variable header. If the message is 

not acknowledged by a PUBACK packet, it is sent again. This level guarantees “at least 

once” delivery. 

 

 QoS 2: This is the highest QoS level, used when neither loss nor duplication of messages 

is acceptable. The packet contains an optional variable header with a packet identifier. 

The first step isdone through the PUBLISH/PUBREC packet pair, and the second 

isachieved with the PUBREL/PUBCOMP packet pair. This level provides a “guaranteed 

service” known as “exactly once” delivery, with no consideration for the number of 

retries as long as the message is delivered once. 

 

  

 

 

 

 

 

 

 

 



  INTERNET OF THINGS [18EC64] 

BGS INSTITUTE OF TECHNOLOGY Page 29 
 

 

 

 

Figure: MQTT QoS Flow 

 

 

 

 Differences between CoAP and MQTT 
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CHAPTER-1 

DATA ANALYTICS FOR IOT 

 In the world of IoT, the creation of massive amounts of data from sensors is common and one of 

the biggest challenges—not only from a transport perspective but also from a data management 

standpoint. 

Before diving deeper into data analytics, it is important to define a few key concepts related to 

data. Depending on how data is categorized, various data analytics tools and processing methods 

can be applied. 

Structured Versus Unstructured Data 

Structured data and unstructured data are important classifications as they typically require 

different toolsets from a data analytics perspective. 

 

 

 

 

 

 

 

 

 

Figure: Comparison between structured and unstructured Data 

 Structured data means that the data follows a model or schema that defines how the data 

is represented or organized, meaning it fits well with a traditional relational database 

management system (RDBMS). 

 Structured data can be found in most computing systems and includes everything from 

banking transaction and invoices to computer log files and router configurations. 

 Unstructured data lacks a logical schema for understanding and decoding the data 

through traditional programming means.  
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Data in Motion Versus Data at Rest 

Data in IoT networks is either in transit (“data inmotion”) or being held or stored (“data at rest”). 

From an IoT perspective, the data from smart objects is considered data in motion as it passes 

through the network en route to its final destination. This is often processed at the edge, using 

fog computing. 

When data arrives at the data center, it is possible to process it in real-time, just like at the edge, 

while it is still in motion. 

Data at rest in IoT networks can be typically found in IoT brokers or in some sort of storage 

array at the data center. The best known of these tools is Hadoop. 

 

IoT Data Analytics Overview 

The true importance of IoT data from smart objects is realized only when the analysis of the data 

leads to actionable business intelligence and in-sights. 

 

 

 

 

 

 

 

 

 

 

Figure: Types of data analysis results 

 Descriptive: Descriptive data analysis tells you what is happening, either now or in the 

past. For example, a thermometer in a truck engine reports temperature values every 

second. 

 Diagnostic: When you are interested in the “why,” diagnostic data analysis can provide 

the answer. Continuing with the example of the temperature sensor in the truck engine, 

you might wonder why the truck engine failed. Diagnostic analysis might show that the 

temperature of the engine was too high, and the engine overheated. 

 Predictive: Predictive analysis aims to foretell problems or issues before they occur. For 

example, with historical values of temperatures for the truck engine, predictive analysis 

could provide an estimate on the remaining life of certain components in the engine. 



INTERNET OF THINGS  18EC64 

BGS INSTITUTE OF TECHNOLOGY Page 4 

 

 Prescriptive: Prescriptive analysis goes a step beyond predictive and recommends 

solutions for upcoming problems. A prescriptive analysis of the temperature data from a 

truck engine might calculate various alternatives to cost-effectively maintain our truck. 

 

 

 

 

 

 

 

 

 

 

 

Figure: Application of value and complexity factors to the types of data analysis 

 

IoT Data Analytics Challenges 

As IoT has grown and evolved, it has become clear that traditional data analytics solutions were 

not always adequate. 

IoT data places two specific challenges on a relational database 

 

 Scaling problems: Due to the large number of smart objects in most IoT networks that 

continually send data, relational databases can grow in-credibly large very quickly. 

 Volatility of data: With relational databases, it is critical that the schema be designed 

correctly from the beginning. Changing it later can slow or stop the database from 

operating. 

 

MACHINE LEARNING 

Machine learning, deep learning, neural networks and convolutional networks 

are words you have probably heard in relation to big data and IoT. ML is indeed central to IoT. 

Machine Learning Overview 

Machine learning is, in fact, part of a larger set of technologies commonly grouped under the 

term artificial intelligence (AI). 

AI includes any technology that allows a computing system to mimic human intelligence using 

any technique, from very advanced logic to basic “if-then-else” decision loops. 

ML is a vast field but can be simply divided in two main categor-ies: supervised and 

unsupervised learning. 

 Supervised Learning 

In supervised learning, the machine is trained with input for which there is a known 

correct answer. 
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 With supervised learning techniques, hundreds or thousands of images are fed 

into the  machine, and each image is labeled. This is called the training set. 

 Each new image is compared to the set of known “good images,” and a deviation 

is calculated to determine how different the new image is from the average human 

image. This process is called classification. 

 After training, the machine should be able to recognize human shapes. Before real 

field deployments, the machine is usually tested with un-labeled pictures—this is 

called the validation or the test set, depending on the ML system used—to verify 

that the recognition level is at acceptable thresholds. If the machine does not reach 

the level of success expected, more training is needed. 

 

 Unsupervised Learning 

 In some cases, supervised learning is not the best method for a machine to help 

with a human decision. 

 For example grouping of engines by the sound they make at a given temperature.  

 Grouping the engines this way can quickly reveal several types of engines that all 

belong to the same category (for example, small engine of chainsaw type, medium 

engine of lawnmower type). All engines of the same type produce sounds and 

temperatures in the same range as the other members of the same group.  

 There will occasionally be an engine in the group that displays unusual 

characteristics (slightly out of expected temperature or sound range). This is the 

engine that you send for manual evaluation. The computing process associated 

with this determination is called unsupervised learning/ 

 This type of learning is unsupervised because there is not a “good” or “bad” 

answer known in advance. It is the variation from a group behavior that al-lows 

the computer to learn that something is different. 

 

Neural Networks 

 Processing multiple dimensions requires a lot of computing power. It is also difficult to 

determine what parameters to input and what combined variations should raise red flags. 

 Neural networks are ML methods that mimic the way the human brain works. 

 The information goes through different algorithms (called units), each of which is in 

charge of processing an aspect of the information. The resulting value of one unit 

computation can be used directly or fed into another unit for further processing to occur. 

 The great efficiency of neural networks is that each unit processes a simple test, and 

therefore computation is quite fast. 
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For ex-ample, a neural network processing human image 

recognition may have two units in a first layer that 

determines whether the image has straight lines and sharp 

angles—because vehicles commonly have straight lines and 

sharp angles, and human figures do not. If the image passes 

the first layer successfully (because there are no or only a 

small percentage of sharp angles and straight lines), a 

second layer may look for different features (presence of 

face, arms, and so on), and then a third layer might compare 

the image to images of various animals and conclude that 

the shape is a human (or not). The great efficiency of neural 

networks is that each unit processes a simple test, and 

therefore computation is quite fast. This model is 

demonstrated in Figure  

 

Machine Learning and Getting Intelligence from Big Data 

ML operations into two broad subgroups 

 Local learning: In this group, data is collected and processed locally, either in the sensor 

itself (the edge node) or in the gateway (the fog node). 

 Remote learning: In this group, data is collected and sent to a central computing unit 

(typically the data center in a specific location or in the cloud), where it is processed. 

 
 
The common applications of ML for IoT revolve around four major domains 
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 Monitoring: Smart objects monitor the environment where they operate. Data is 

processed to better understand the conditions of operations.  These conditions can refer to 

external factors, such as air temperature, humidity, or presence of carbon dioxide in a 

mine, or to operational internal factors, such as the pressure of a pump, the viscosity of 

oil flowing in a pipe, and so on. ML can be used with monitoring to detect early fail-ure 

conditions or to better evaluate the environment. 

 Behavior control: Monitoring commonly works in conjunction withbehavior control. 

When a given set of parameters reach a target threshold defined in advance (that is, 

supervised) or learned dynamically through deviation from mean values (that is, 

unsupervised) monitoring functions generate an alarm. 

 Operations optimization: Behavior control typically aims at taking corrective actions 

based on thresholds. However, analyzing data can also lead to changes that improve the 

overall process. Behavior control results in different machine actions. The objective is not 

merely to pilot the operations but to improve the efficiency and the result of the 

operations. 

 Self-healing, self-optimizing: A fast-developing aspect of deep learning is the closed 

loop. ML-based monitoring triggers changes in machine behavior and operations 

optimizations. The ML engine can be programmed to dynamically monitor and combine 

new parameters and automatically deduce and implement new optimizations when the 

results demonstrate a possible gain. The system becomes self-learning and self-

optimizing. 

 

 

BIG DATA ANALTICS TOOLS AND TECHNLOGY 

 

Big data analytics can consist of many different software pieces that together collect, 

store, manipulate and analyze all different data types. Generally, the in-dustry looks to 

the “three Vs” to categorize big data. 

 Velocity: Velocity refers to how quickly data is being collected andanalyzed. 

Hadoop Distributed File System is designed to ingest and pro-cess data very 

quickly. 

 Variety: Variety refers to different types of data. Often you see data categorized 

as structured, semi-structured, or unstructured. Different database technologies 

may only be capable of accepting one of these types. Hadoop is able to collect and 

store all three types. 

 Volume: Volume refers to the scale of the data. Typically, this is measured from 

gigabytes on the very low end to petabytes or even exa-bytes of data on the other 

extreme. It is common to see clusters of servers that consist of dozens, hundreds, 

or even thousands of nodes for some large deployments. 
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The characteristics of big data can be defined by the sources and types of data. 

First is machine data, which is generated by IoT devices and is typically 

unstructured data. Second is transactional data, which is from sources that 

produce data from transactions on these systems, and, have high volume and 

structured. Third is social data sources, which are typically high volume and 

structured. Fourth is enterprise data, which is data that is lower in volume and 

very structured. Hence big data consists of data from all these separate sources. 

 

MASSIVELY PARALLEL PROCESSING DATABASES 

Massively parallel processing (MPP) databases were built on the concept of the relational 

data warehouses but are designed to be much faster, to be efficient, and to support 

reduced query times. 

MPPs are sometimes referred to as analytic databases because they are designed to allow 

for fast query processing and often have built-in analytic functions. 

Figure: MPP shared nothing architecture 

In the figure, we see it typically contains a single master node that is responsible for the 

coordination of all the data storage and processing across the cluster. It operates in a 

“shared-nothing” fashion, with each node containing local processing, memory, and 

storage and operating in-dependently. Data storage is optimized across the nodes in a 

structured SQL-like format that allows data analysts to work with the data using common 

SQL tools and applications. 

 

NoSQL Databases 

NoSQL (“not only SQL”) is a class of databases that support semi-structured and unstructured 

data, in addition to the structured data handled by data warehouses and MPPs. NoSQL is not a 
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specific database techno-logy; rather, it is an umbrella term that encompasses several different 

types of databases, including the following. 

 Document stores: This type of database stores semi-structured data, such as XML or 

JSON. Document stores generally have query engines and indexing features that allow 

for many optimized queries. 

 Key-value stores: This type of database stores associative arrays where a key is paired 

with an associated value. These databases are easy to build and easy to scale. 

 Wide-column stores: This type of database stores similar to a key-value store, but the 

formatting of the values can vary from row to row, even in the same table. 

 Graph stores: This type of database is organized based on the relationships between 

elements. Graph stores are commonly used for social media or natural language 

processing, where the connections between data are very relevant. 

 

HADOOP 

Hadoop was originally developed as a result of projects at Google and Yahoo!, and the original 

intent for Hadoop was to index millions of websites and quickly return search results for open 

source search engines. Initially, the project had two key elements 

 

 Hadoop Distributed File System (HDFS): A system for storingdata across multiple 

nodes  

 MapReduce: A distributed processing engine that splits a large taskinto smaller ones that 

can be run in parallel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For HDFS, this capability is handled by specialized nodes in the cluster, including 

NameNodes and DataNodes. 
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 NameNodes: These are a critical piece in data adds, moves, deletes, and reads on 

HDFS. They coordinate where the data is stored, and main-tain a map of where 

each block of data is stored and where it is replicated. All interaction with HDFS 

is coordinated through the primary (active) NameNode, with a secondary 

(standby) NameNode notified of the changes in the event of a failure of the 

primary. The NameNode takes write re-quests from clients and distributes those 

files across the available nodes in configurable block sizes, usually 64 MB or 128 

MB blocks. The Name Node is also responsible for instructing the DataNodes 

where replication should occur. 

 

 DataNodes: These are the servers where the data is stored at the direction of the 

NameNode. It is common to have many DataNodes in a Hadoop cluster to store 

the data. Data blocks are distributed across several nodes and often are replicated 

three, four, or more times across nodes for redundancy. Once data is written to 

one of the DataNodes, the DataNode selects two (or more) additional nodes, 

based on replication policies, to ensure data redundancy across the cluster. Disk 

redundancy techniques such as Redundant Array of Independent Disks (RAID) 

are generally not used for HDFS because the NameNodes and DataNodes 

coordinate block-level redundancy with this replication technique. 

 

EDGE STREAMING ANALYTICS 

A major area of evolution for IT in the past few years has been the transition to cloud services 

The key values of edge streaming analytics include the following: 

 Reducing data at the edge: The aggregate data generated by IoT devices is generally in 

proportion to the number of devices. The scale of these devices is likely to be huge, and 

so is the quantity of data they generate. 

 Analysis and response at the edge: Some data is useful only at the edge (such as a 

factory control feedback system). In cases such as this, the data is best analyzed and acted 

upon where it is generated. 

 Time sensitivity: When timely response to data is required, passing data to the cloud for 

future processing results in unacceptable latency. 

 
EDGE ANALYTICS CORE FUNCTIONS 

Streaming analytics at the edge can be broken down into three simple stages 

 Raw input data: This is the raw data coming from the sensors into the analytics 

processing unit 

 Analytics processing unit (APU): The APU filters and combines data streams (or 

separates the streams, as necessary), organizes them by time windows, and performs 

various analytical functions. 
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 Output streams: The data that is output is organized into insightful streams and is used 

to influence the behavior of smart objects, and passed on for storage and further 

processing in the cloud. 

 

Figure: illustrates the stages of data processing in an edge APU 

 

In order to perform analysis in real-time, the APU needs to perform the following 

functions 

 Filter: The streaming data generated by IoT endpoints is likely to be very large, 

and most of it is irrelevant. For example, a sensor may simply poll on a regular 

basis to confirm that it is still reachable. 

 Transform: In the data warehousing world, Extract, Transform, and Load (ETL) 

operations are used to manipulate the data structure into a form that can be used 

for other purposes. 

 Time: As the real-time streaming data flows, a timing context needs to be 

established. This could be to correlated average temperature readings from 

sensors on a minute-by-minute basis. 

Figure: Corelating data stream with historical data 
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 Correlate: Streaming data analytics becomes most useful when multiple data streams are 

combined from different types of sensors. For example in hospital, several vital signs are 

measured for patients including body temperatures, blood pressure  heart rate and 

respiratory rate and all the data are used to get the clear picture of patients health. 

 

 Match patterns: Once the data streams are properly cleaned, trans-formed, and 

correlated with other live streams as well as historical datasets, pattern matching 

operations are used to gain deeper insights to the data. For example, If an unexpected 

event arises, such as a sudden change in heart rate or respiration, the pattern matching 

operator recognizes this as out of the ordinary and can take certain actions, such as 

generating an alarm to the nursing staff. 

 
 Improve business intelligence: Ultimately, the value of edge analytics is in the 

improvements to business intelligence that were not previously available. For example 

conducting edge analytics on patients in a hospital allows staff to respond more quickly 

to the patient’s changing needs and also reduces the volume of data sent to the cloud. 

 

 

DISTRIBUTED ANALYTICS SYSTEMS 

Depending on the application and network architecture, analytics can happen at any point 

throughout the IoT system. Streaming analytics maybe performed directly at the edge, in the fog, 

or in the cloud data center. 

 

Figure: Distributed Analytics throughout the IoT system 

The above figure shows an example of an oil drilling company that is measuring both pressure 

and temperature on an oil rig. While there may be some value in doing analytics directly on the 

edge, in this example, the sensors communicate via MQTT through a message broker to the fog 

analytics node, allowing a broader data set. The fog node is located on the same oil rig and 
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performs streaming analytics from several edge devices, giving it better insights due to the 

expanded data set. 

NETWORK ANALYTICS 

Another form of analytics that is extremely important in managing IoT systems is network-based 

analytics. Network analytics has the power to analyze details of communications patterns made 

by protocols and correlate this across the network. 

In addition to other network management services, are as follows: 

 Network traffic monitoring and profiling: Flow collection from the network layer 

provides global and distributed near-real-time monitoring capabilities. IPv4 and IPv6 

network wide traffic volume and pattern analysis helps administrators proactively detect 

problems and quickly troubleshoot and resolve problems when they occur. 

 Application traffic monitoring and profiling: Monitoring and profiling can be used to 

gain a detailed time-based view of IoT access ser-vices, such as the application-layer 

protocols, including MQTT, CoAP, andDNP3, as well as the associated applications that 

are being used over the network. 

 Capacity planning: Flow analytics can be used to track and anticipate IoT traffic growth 

and help in the planning of upgrades when deploying new locations or services by 

analyzing captured data over a long period of time. 

 Security analysis: Because most IoT devices typically generate a low volume of traffic 

and always send their data to the same server(s), any change in network traffic behavior 

may indicate a cyber security event, such as a denial of service (DoS) attack. 

 

FLEXIBLE NETFLOW ARCHITECTURE 

Flexible NetFlow (FNF) and IETF IPFIX (RFC 5101, RFC 5102) are ex-amples of protocols that 

are widely used for networks. FNF is a flow technology developed by Cisco Systems that is 

widely deployed all over the world. Key advantages of FNF are as follows: 

 Flexibility, scalability, and aggregation of flow data  

 Ability to monitor a wide range of packet information and produce new information 

about network behavior  

 Enhanced network anomaly and security detection  

 User-configurable flow information for performing customized traffic identification and 

ability to focus and monitor specific network behavior  

 Convergence of multiple accounting technologies into one accounting mechanism 
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FNF Components 

 

Figure:Flexible netflow overview 

 FNF Flow Monitor (NetFlow cache): The FNF Flow Monitor de-scribes the NetFlow 

cache or information stored in the cache. The Flow Monitor contains the flow record 

definitions with key fields (used to create a flow, unique per flow record: match 

statement) and non-key fields(collected with the flow as attributes or characteristics of a 

flow) withinthe cache. Also, part of the Flow Monitor is the Flow Exporter, which con-

tains information about the export of NetFlow information, including the destination 

address of the NetFlow collector. The Flow Monitor includes various cache 

characteristics, including timers for exporting, the size of the cache, and, if required, the 

packet sampling rate. 

 FNF flow record: A flow record is a set of key and non-key NetFlowfield values used to 

characterize flows in the NetFlow cache. Flow records may be predefined for ease of use 

or customized and user defined. A typical predefined record aggregates flow data and 

allows users to target common applications for NetFlow. User-defined records allow 

selections of specific key or non-key fields in the flow record. The user-defined field is 

the key to Flexible NetFlow, allowing a wide range of information to be characterized 

and exported by NetFlow. It is expected that different net-work management applications 
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will support specific user-defined and predefined flow records based on what they are 

monitoring (for example,security detection, traffic analysis, capacity planning).  

 FNF Exporter: There are two primary methods for accessing Net-Flow data: Using the 

show commands at the command-line interface(CLI), and using an application reporting 

tool.. The Flexible NetFlow Exporter allows the user to define where the export can be 

sent, the type of transport for the export, and properties for the export. Multiple exporters 

can be configured per Flow Monitor.  

 Flow export timers: Timers indicate how often flows should be ex-ported to the 

collection and reporting server.  

 NetFlow export format: This simply indicates the type of flow re-porting format.  

 NetFlow server for collection and reporting: This is the destination of the flow export. 

It is often done with an analytics tool that looks for anomalies in the traffic patterns. 

Flexible NetFlow in Multiservice IoT Networks 

In the context of multiservice IoT networks, it is recommended that FNF be configured on the 

routers that aggregate connections from the lastmile’s routers. Flow analysis at the gateway is 

not possible with all IoT systems. Some of the challenges with deploying flow analytics tools in 

an IoT network include the following 

 The distributed nature of fog and edge computing may mean that traffic flows are 

processed in places that might not support flow analytics, and visibility is thus lost. 

 IPv4 and IPv6 native interfaces sometimes need to inspect inside VPN tunnels, which 

may impact the router’s performance.  

 Additional network management traffic is generated by FNF reporting devices. The 

added cost of increasing bandwidth thus needs to be re-viewed, especially if the backhaul 

network uses cellular or satellite communications. 
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CHAPTER-2 

SECURING IOT 

A BRIEF HISTORY OF OT SECURITY 

 More than in most other sectors, cyber security incidents in industrial environments can 

result in physical consequences that can cause threats to human lives as well as damage 

to equipment, infrastructure, and the environment.  

 Cyber security incidents have caused majority damage on the OT, For example, Stuxnet 

is thought to have been deployed on USB memory sticks up to two years before it was 

finally identified and discovered  

 In addition to physical damage, operational interruptions have occurred in OT 

environments due to cyber security incidents 

 For example, in 2000,the sewage control system of Maroochy Shire in Queensland, 

Australia, was accessed remotely, and it released 800,000 liters of sewage into the 

surrounding waterways. 

 As technology has advanced, tools have been created to make attacks much easier to 

carry out. 

 Many of the legacy protocols used in IoT environments are many decades old, and there 

was no thought of security when they were first developed. 

 An important advantage for operators is the fact that they are far more familiar with their 

environment and have a better understanding of their processes, and can thus leverage 

multiple technologies and capabilities to defend their networks against attack. 

 OT-specific communication systems have typically been standalone and physically 

isolated from the traditional IT enterprise networks in the same companies 

 The isolation between industrial networks and the traditional IT business networks has 

been referred to as an “air gap,” suggesting that there are no links between the two. 

 Broadly speaking, there is a varying amount of interconnection between OT and IT 

network environments, and many interdependencies between the two influence the level 

of interconnection. 

 In addition to the policies, regulations, and governance imposed by the different 

industrial environments, there is also a certain amount of end-user preference and 

deployment-specific design that determines the degree of isolation between IT and OT 

environments. 

 Evolution of ever-increasing IT technologies in the OT space comes with the benefits of 

increased accessibility and a larger base of skilled operators than with the nonstandard 

and proprietary communication methods in traditional industrial environments. 

 The accessibility and scale makes security a major concern, particularly because many 

systems and devices in the operational domain were never envisioned to run on a shared, 



INTERNET OF THINGS  18EC64 

BGS INSTITUTE OF TECHNOLOGY Page 17 

 

open standards–based infrastructure, and they were not designed and developed with high 

levels of built-in security capabilities. 

 Projects in industrial environments are often capital intensive, with an expected life span 

that can be measured in decades. The deployed OT systems often have slower 

development and upgrade cycles and can quickly become out of sync with traditional IT 

network environments. 

 The proprietary nature of OT systems meant that threats from the outside world were 

unlikely to occur and were rarely addressed. There has, however, been a growing trend 

whereby OT system vulnerabilities have been exposed and reported. 

 

COMMON CHALLENGES IN OT SECURITY 

The security challenges faced in IoT are by no means new and are not limited to specific 

industrial environments. Some of the common challenges faced in IoT are explained below. 

 Erosion of Network Architecture 

Two of the major challenges in securing industrial environments have been initial design 

and ongoing maintenance. The initial design challenges arose from the concept that 

networks were safe due to physical separation from the enterprise with minimal or no 

connectivity to the out-side world, and the assumption that attackers lacked sufficient 

knowledge to carry out security attacks. The challenge, and the biggest threat to network 

security, is standards and best practices either being misunderstood or the network being 

poorly maintained. In many industries, the control systems consist of packages, skids, or 

components that are self-contained and may be integrated as semi-autonomous portions 

of the network. These packages may not be as fully or tightly integrated into the overall 

control system, network management tools, or security applications, resulting in potential 

risk. 

 Pervasive Legacy Systems 

Due to the static nature and long lifecycles of equipment in industrial environments, 

many operational systems may be deemed legacy systems. Beyond the endpoints, the 

communication infrastructure and shared centralized compute resources are often not 

built to comply with modern standards 

 Insecure Operational Protocols 

Many industrial control protocols, particularly those that are serial based, were designed 

without inherent strong security requirements. Common industrial protocols and their 

respective security concerns are discussed below 

 Modbus: Modbus is commonly found in many industries, such as utilities and 

manufacturing environments, and has multiple variants. The security challenges 

that have existed with Modbus are not unusual. Authentication of communicating 

endpoints was not a default operation because it would allow an inappropriate 

source to send improper commands to the recipient 
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 DNP3 (Distributed Network Protocol): DNP3 is found in multiple deployment 

scenarios and industries. It is common in utilities and is also found in discrete and 

continuous process systems. There is an explicit “secure” version of DNP3, but 

there also remain many insecure implementations of DNP3 as well. 

 ICCP (Inter-Control Center Communications Protocol): ICCP is a common 

control protocol in utilities across North America that is frequently used to 

communicate between utilities. ICCP was designed from inception to work across 

a WAN. Initial versions of ICCP had several significant gaps in the area of 

security such as no authentication for communication and encryption across the 

protocol was not enabled. 

 OPC (OLE for Process Control): OPC is based on the Microsoft 

interoperability methodology Object Linking and Embedding (OLE). This is an 

example where an IT standard used within the IT domain and personal computers 

has been leveraged for use as a control protocol across an industrial network. Of 

particular concern with OPC is the dependence on the Remote Procedure Call 

(RPC) protocol, which creates two classes of exposure- vulnerabilities and level 

of risk. 

 

HOW IT AND OT SECURITY PRACTICES AND SYSTEMS VARY 

The differences between an enterprise IT environment and an industrial-focused OT deployment 

are important to understand because they have a direct impact on the security practice applied to 

them. 

 The Purdue Model for Control Hierarchy: The Purdue Model for Control Hierarchy is 

the most widely used framework across industrial environments globally and is used in 

manufacturing, oil and gas, and many other industries. 

 

 

 

 

 

 

 

 

Figure: The Logical Framework Based on the Purdue Model for Control Hierarchy 
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This model identifies levels of operations and defines each level. The enterprise and operational 

domains are separated into different zones and kept in strict isolation via an industrial 

demilitarized zone (DMZ): 

Level 5: Enterprise network: Corporate-level applications such as Enterprise Resource 

Planning (ERP), Customer Relationship Management (CRM), document management, and 

services such as Internet access and VPN entry from the outside world exist at this level. 

Level 4: Business planning and logistics network: The IT services exist at this level and may 

include scheduling systems, material flow applications, optimization and planning systems, and 

local IT services such as phone, email, printing, and security monitoring. 

DMZ:The DMZ provides a buffer zone where services and data can be shared between the 

operational and enterprise zones. It also allows for easy segmentation of organizational control. 

By default, no traffic should traverse the DMZ; everything should originate from or terminate on 

this area. DMZ resides between the IT and OT levels. Clearly, to protect the lower industrial 

layers, security technologies such as firewalls, proxy servers, and IPSs should be used to en-sure 

that only authorized connections from trusted sources on expected ports are being used 

Level 3: Operations and control: This level includes the functions involved in managing the 

workflows to produce the desired end products and for monitoring and controlling the entire 

operational system. This could include production scheduling, reliability assurance, system wide 

control optimization, security management, network management, and potentially other required 

IT services, such as DHCP, DNS, and timing. 

Level 2: Supervisory control: This level includes zone control rooms, controller status, control 

system network/application administration, and other control-related applications, such as 

human-machine interface (HMI) and historian. 

Level 1: Basic control: At this level, controllers and IEDs, dedicated HMIs, and other 

applications may talk to each other to run part or all of the control function. 

Level 0: Process: This is where devices such as sensors and actuators and machines such as 

drives, motors, and robots communicate with controllers or IEDs. 

FORMAL RISK ANALYSIS STRUCTURES: OCTAVE AND FAIR 

OCTAVE (Operationally Critical Threat, Asset and Vulnerability Evaluation) is a standard for risk 

definition from the Software Engineering Institute at Carnegie Mellon University  

FAIR (Factor Analysis of Information Risk) is a standard for risk definition from The Open Group 
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 OCTAVE 

OCTAVE has undergone multiple iterations. OCTAVE Allegro is a lightweight and less 

burdensome process to implement. Allegro assumes that a robust security team is not on 

standby or immediately at the ready to initiate a comprehensive security review. 

 

 

 

 

 

 

 

 

 

 

 

Figure: OCTAVE Allegro steps and phases 

 The first step of the OCTAVE Allegro methodology is to establish a risk measurement criterion. 

OCTAVE provides a fairly simple means of doing this with an emphasis on impact, value, and 

measurement. 

 The second step is to develop an information asset profile. This profile is populated with assets, a 

prioritization of assets, attributes associated with each asset, including owners, custodians, 

people, explicit security requirements, and technology assets. 

 The third step is to identify information asset containers. Roughly speaking, this is the range of 

transports and possible locations where the in-formation might reside. This references the 

compute elements and the networks by which they communicate. However, it can also mean 

physical manifestations such as hard copy documents or even the people who know the 

information. 

 The fourth step is to identify areas of concern. At this stage, the analyst looks to risk profiles and 

delves into the previously mentioned risk analysis. It is no longer just facts, but there is also an 

element of creativity that can factor into the evaluation. History both within and outside the 

organization can contribute. References to similar operational use cases and incidents of security 

failures are reasonable associations. 

 Closely related is the fifth step, where threat scenarios are identified. Threats are broadly (and 

properly) identified as potential undesirable events. It is at this point that an explicit 

identification of actors, motives, and outcomes occurs. 
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 At the sixth step risks are identified. Within OCTAVE, risk is the possibility of an undesired 

outcome. This is extended to focus on how the organization is impacted. 

 The seventh step is risk analysis, with the effort placed on qualitative evaluation of the impacts 

of the risk. 

 Finally, mitigation is applied at the eighth step. There are three outputs or decisions to be taken 

at this stage. One may be to accept a risk and do nothing, other than document the situation, 

potential outcomes, and reasons for accepting the risk. The second is to mitigate the risk with 

whatever control effort is required. The final possible action is to defer a decision, meaning risk 

is neither accepted nor mitigated. 

 

 FAIR 

 FAIR places emphasis on both unambiguous definitions and the idea that risk and 

associated attributes are measurable. 

 FAIR has a definition of risk as the probable frequency and probable magnitude 

of loss. With this definition, a clear hierarchy of sub-elements emerges, with one 

side of the taxonomy focused on frequency and the other on magnitude. 

 Loss even frequency is the result of a threat agent acting on an asset with a 

resulting loss to the organization. This happens with a given frequency called the 

threat event frequency (TEF), in which a specified time window becomes a 

probability 

 The other side of the risk taxonomy is the probable loss magnitude (PLM), which 

begins to quantify the impacts, with the emphasis again being on measurable 

metrics. 

 FAIR defines six forms of loss, four of them externally focused and two internally 

focused. Of particular value for operational teams are productivity and 

replacement loss. Response loss is also reasonably measured, with fines and 

judgments easy to measure but difficult to predict. Finally, competitive advantage 

and reputation are the least measurable. 
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INTRODUCTION TO ARDUINO 

Arduino is a tiny computer that can be programmed to read information from the world around 

us and to send commands to outside world. 

Arduino can be connected to several devices and electrical circuits. 

The brain of the Arduino uno is an ATmega328p (microcontroller) chip where the program is 

stored. Instruction to the microcontroller are given by using Arduino programming 

language(c,c++). Arduino software (IDE-integrated development environment) is used for 

development. 

Why Arduino? 

 Arduino is an open source product, software/hardware which is accessible and flexible to 

customers 

 Arduino is flexible because it has variety of digital and analog pins, SPI and PWM 

outputs. 

 Arduino is easy to use, connected to a computer through a USB and communicates using 

serial protocol. 

 Inexpensive, around 500rupees per board with free editable software. 

 Arduino has growing online community where lots of source code is available for use, 

share and post examples for others to use. 

 Arduino is cross platform, which can work on windows, Mac or Linux platforms. 

 Arduino follows simple, clear programming environment as C language. 

 

Which Arduino? 

Hundreds of Arduino boards are available in the market. Among which the popular Arduino Uno 

is used in almost 99% of projects. 

Some of the boards from Arduino family are 

 Arduino Mega has more memory and pins with ATmega2560 chip. This is useful where 

Arduino Uno is not sufficient for the project. 
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 Arduino Micro is a bit smaller with a chip ATmega32u4 that can act like a keyboard or 

mouse which does its task with a USB. Its slim with downward pins which can be 

plugged into a breadboard. 

 The Arduino MKR1000 is a little like an Arduino Micro but has a more powerful 32 bit 

ATSAM ARM chip and built in WiFi. This is useful in internet of things projects. 

 Flora is an Arduino compatible from Adafruit which is round wearable which can be 

sewed into clothing 

 

EXPLORING ARDUINO UNO LEARNING BOARD 

 

   

 

 

 

 

 

 

 

 

Figure: Arduino UNO Learning Board 

 Microcontroller: the ATmega328p id the Arduino brain. Everything on the Arduino 

board support this microcontroller. 

 Digital pins: Arduino has 14 digital pins labeled from 0 to 13 that can act as inputs or 

outputs. 

 When set as inputs these pins can read voltage(HIGH, LOW). When set as 

outputs these pins can apply voltages(5VHIGH, 0V LOW) 
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 PWM pins: these are digital pins marked with ~ (pins 11,10,9,6,5, and 3). Pulse width 

modulation(PWM) pins allows to make digital pins output fake varying amounts of 

voltage. 

 TX and RX pins: Digital pins 0 and 1. The T stands for transmit and R for Receive. 

Arduino uses these pins to communicate with the computer. These pins should be used in 

case of shortage of pins for projects else t has to be avoided. 

 LED attached to digital pin 13: This is useful for an easy debugging of the Arduino 

sketches. 

 TX and RX pins: these pins blink when there are information being sent between the 

computer and the Arduino  

 Analog Pins:the analog pins are labeled from A0 to A5and are most often used to read 

analog sensors. They can read different amounts of voltage between 0 and 5V. these can 

also be used as digital output/input pins like digital pins. 

 Power Pins: The Arduino has 3.3V nd5V supply. The pin labeled as GND is the ground 

pin. 

 Reset Button: when this button is pressed the program that is currently running on 

Arduino will start from beginning. There is a reset pin next to power pin. When a small 

voltage is applied to this pin it will reset Arduino. 

 Power ON LED: will be on when power is applied to the Arduino. 

 USB jack: By connecting a cable to this jack program is uploaded.   

 Power Jack: This jack is used to power up Arduino.  

 

Things that Arduino Can Do 

 Control LED 

 Display a message in a display like an LCD display 

 Control DC or Servo motors 

 Read data from outside world 

 Motion Sensor: allows detecting movement. 

  Light Sensor: allows to measure the quantity of light in outside world. 

 Humidity and temperature sensor: measures humidity and temperature. 

 Ultrasonic sensor: allows to determine the distance to an object through sonar. 
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 Sheilds: an extension of the Arduino. 

Sheilds are boards that will expand the functionalities of Arduino.  

 

 INSTALLING THE SOFTWARE(ARDUINO IDE) 

The Arduino Software ( allows to write programs and upload them to board. In the Arduino 

Software page you will find two options 

1 Online IDE (Arduino Web Editor) :It will allow to save sketches in the cloud, having 

them available from any device and backed up 

2 Offline should use the latest version of the desktop IDE 

Install the Arduino Desktop IDE accordingly to operating system 

 Windows 

 Mac OS X 

 Linux 

 Portable IDE (Windows and Linux) 

 

 

 

 

 

 

 

 

 

 

 

Figure: Arduino IDE  
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The toolbar buttons and functions of each button are as shown in the table. 

Verify/Compile  Checks the code for errors 

Stop Stop the serial monitor or un-highlight other buttons 

New Creates a new blank sketch. Enter a name and location for your sketch 

Open Shows a list of sketches in your sketchbook 

Upload Uploads the current sketch to the Arduino. You need to make sure that you have the 

current board and port selected(in tools menu) before uploading 

Serial monitor Display serial data being sent from Arduino 

Verify/compile Button is used to check that your code is correct before you upload it to your Arduino 

Stop button Will stop the serial monitor from operating. If you need to obtain a snapshot of the 

serial data to be examined. 

Table: Toolbar options in Arduino IDE 

 

Technical Specifications of Arduino Uno is listed in the below table 

 

Microcontroller n Arduino UNo ATmega328p 

Operating Voltage  5V 

Input Voltage(recommended) 7-12V 

Input voltage(limit) 6-20V 

Digital I/O pins 14(of which 6 provide PWM outputs) 

PWM Digital I/O pins  6 

Analog input pins 6 

DC Current pr I/O pin 20mA 

DC Current for 3.3V pin 50mA 

Flash Memory 32KB(ATmega328p) of which 0.5 KB used 

by bootloader 

SRAM 2KB(ATmega328p) 

EEPROM 1KB(ATmega328p) 

Clock Speed 16MHz 

 

Table: Technical Specifications of Arduino UNO 
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Connecting Arduino Uno Learning Board 

 If you want to program your Arduino Uno while offline you need to install the Arduino 

Desktop IDE 

 Connect your Uno board with an A B USB cable sometimes this cable is called a USB 

printer cable 

 If you used the Installer, Windows from XP up to 10 will install drivers automatically as 

soon as you connect your board. 

 You'll need to select the entry in the Tools Board menu that corresponds to your Arduino 

or Genuino board as shown in the figure 
 

 

 

 

 

 

 

 

 

 

 

 

Figure: Selecting the right board 

 

 Select the serial device of the board from the Tools Serial Port menu This is likely to be 

COM 3 or higher (COM 1 and COM 2 are usually reserved for hardware serial ports) To 

find out, you can disconnect your board and re open the menu the entry that disappears 

should be the Arduino or Genuino board. Reconnect the board and select that serial port 

as shown n figure. 
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Figure: showing the layout of Arduino IDE selecting right port 

 Open your first sketch 

 Open the LED blink example sketch: File > Examples>01.Basics > Blink 

 

 

 

 

 

 

 

 Upload the program 

 Now, simply click the " button in the environment Wait a few seconds you should see the 

RX and TX leds on the board flashing If the upload is successful, the message "Done 

uploading will appear in the status bar 

 

 

 

 A few seconds after the upload finishes, you should see the pin 13 ( LED on the board 

start to blink  
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FUNDAMENTALS OF ARDUINO PROGRAMMING 

The basic structure of Arduino programming with respect to usage of variables, constants, 

control flow statements and predefined functions to read the analog and digital inputs is as 

follows 

 

Structure 

The structure contains two parts 

 

void setup()             //Preparation function used to declare variables 

                                 // First function that runs only one  in the program  

{                         

   Statement(s);         //used to setup pins for serial communication 

} 

 

void loop()               // execution block where instructions are executed                                   

{                                    repeatedly 

     Statement(s);       //this is the core of the Arduino program 

                                 // Functions include reading inputs triggering outputs etc 

}                                                                                                                       

 

void setup() void setup() 

{ 

      pinMode(pin,INPUT);         //’pin’ configured as input 

} 

void loop() void loop()          //after calling setup(),loop() functions does its task 

{ 

    digitalWrite(pin,HIGH) ;    //sets ‘pin’ ON 

    delay(10000);                     // pause for 10000 milli seconds 

 

    digitalWrite(pin, LOW)    //sets ‘pin’ OFF 

    delay(10000);                    // pause for 10000 milli seconds 

}       

 

Functions A function is a piece of code that has a name and a set of statements executed 

when function is called. Functions are declared by its type followed with 

name of function. 

 

Syntax: 

type functionName(parameters) 

{ 

     Statement(s); 

} 

 

Example: 

int  delayvar() 

{ 
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   int var;                                 // create temporary variable var 

   var=analogRead(potent);    // read from potentiometer 

   var=var/4;                           //convert the value of variable var 

   return var;     

} 

 

{} curly braces They define beginning and end of function blocks, unbalanced braces lead to 

error 

Semicolon It is used to end a statement and separate elements of a program. 

/*….*/ block 

comments 

Multiline comments begin with /* with a description of blocks and ends with 

*/ 

// line comments Single line comment begins with // and ends with next instruction followed 

Variables A variable is a way of storing value for later use in the program. 

A variable type maybe int,long,float etc   

A variable can be defined and assigned an initial value  

A global variable is declared at the beginning of the program before setup() 

and can be used in any part of the program. 

A local variable is defined inside the function in which it is declared 

 

Example: 

 

int var;             // var is a global  variable and can be used by all functios 

void setup() 

{ 

 

} 

void loop() 

{ 

 

for(int x=0;x<5;) 

{ 

x++;                  // variable x can be used within the loop 

} 

float y;                // variable y is can be used only in loop function 

}         

 

Data Types  

 

 

Data Type Syntax Range 

Byte byte x=100; 0-255 

Int int y=200; 32767 to -32768 

Long long var = 8000; 2147483647 to -2147483648 

Float float x= 3.14; 3.4028235E+38 to -3.4028235E+38 

Arrays int myarray 

[]={10,20,30} 

Size depends on the data type 

associated with declaration 
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Operators 

 

 

 

Operators  Synatx and usage 

Arithmetic operators 

(+,-,/,*) 

x=x+5; 

y=y-6; 

z=z*2; 

p=p/q; 

Assignment operators 

(=,++,--,+=,*=,/=) 

x++;// same as x=x+1 

x+=y;//same as x=x+y 

x-=y;//same as x=x-y 

x*=y;//same as x=x*y 

x/=y;//same as x=x/y 

Comparison operators 

(==,!=,<,>,<=,<=) 

x==y    //x is equal to y 

x!=y    // x is not equal to y 

x<y     // x is less than y 

x!-y    //x is no equal to y 

Logical operators 

(&&,||,!) 

x>2 && x<5   // Evaluates to true only if both                             

expression are true  

x>2||y>2         // Evaluates to true only if any     

one  expression are true 

!x>2               // true if only expression is false 

Constants  

Constants Usage 

TRUE/FALSE Boolean constants true=1 

an false=0 defined in 

logic levels 

 

if(b==TRUE) 

 { 

//do something 

} 

INPUT/ 

OUTPUT 

Used with pinMode () 

function to define levels. 

pinMode(13,OUTPUT) 

HIGH/LOW Used to define pin levels 

HIGH1 ON, 5 volts 

LOW0, OFF, 0 volts 

Digital Write(13,HIGH) 
 

 

 

Flow Control Statements 

if If(some_variable==value) 

{ 

Statement(s);  //Evaluated only if comparisons results in a true value 

} 

if..else if(input==HIGH) 
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{ 

Statement(s);    //Evaluated only if comparison  results in a true value  

} 

Else 

{ 

Statement(s);    // Evaluated only if comparison  results in a false value 

} 

for for(initialization;condition;expression) 

{ 

 

Dosomething;      //Evaluated till condition becomes false 

 

} 

for(int p=0;p<5;p++)   //declares p, tests if less than 5, increments by 1 

{ 

digitalWrite(13,HIGH);    //sets pin 13 ON 

delay(250);                        //pauses for ¼ second 

digitalWrite(13,LOW);     // sets pin 13 OFF 

delay(250);                       //pause for ¼ second 

} 

 

while While loop executes until the expression inside parenthesis becomes false 

 

while(some_variable??value) 

{ 

    Statement(s);   //Evaluated till comparison results in a false value 

} 

do….while Bottom evaluated loop, works same way as while loop but condition is tested 

at the end of loop. 

Do 

{ 

Dosomething; 

}while(somevalue); 

Digital and Analog input output pins and their usage  

Digital i/o Methods Usage 

 pinMode(pin,mode) Used in setup() method to configure pin to 

behave as INPUT/OUTPUT 

pinMode(pin,INPUT) //pin set to INPUT 

pinMode(pin,OUTPUT) //pin set to OUTPUT  

DigitalRead(pin) Read value from a specified pin with result being 

HIGH/LOW  

 

val=digital Read(pin);    //Val will be equal to 

input pin 

Example int x=13;  //connect ‘x’ to 13 

int p=7;   //connect push button to pin 7 
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int val=();  //variable to store the read value  

void setup() 

{ 

pinMode(x, OUTPUT); //sets ‘x’ as OUTPUT 

} 

void loop() 

{ 

val=digitalRead(p);   //sets ‘value’ to 0 

digitalWrite(x,val);  //sets ‘x’ to button value 

} 

 

Analog i/o Methods Usage 

 analogRead(pin) Reads value from a specified analog pin works 

on pins 0-5 

val=analogRead(pin);  //’val’ equal to pin 

analogWrite(pin,value) Writes an analog value using pulse width 

modulation (PWM) to a pin marked PWM works 

on pins 3,5,6,9,10 

Example int x=10;  //connect ‘x’ to pin 13 

int p=0; 

pin 7 

int val;  //variable for reading 

void setup()   

{ 

}       // No setup is needed 

Void loop() 

{ 

Val=analogRead(p);  //sets ‘value’ to 0 

Val/=4; 

analogWrite(x,val); //outputs PWM signal to ‘x’ 

} 

time Methods Usage 

 delay(ms) Pauses for amount of time specified in 

milliseconds. 

delay(1000);  //waits for one second 

millis() Returns the number of milliseconds since 

Arduino is running 

val=millis();   //’val’ will be equal to millis() 

math Methods Usage 

 min(x,y) Calculates minimum of two numbers  

val=min(val,10); //sets ‘val’ to smaller than 10 or 

equal to 10 but never gets above 10 

max(x,y) val=max(val,10);  //sets ‘val’to larger than 10 or 

10 

random Methods Usage 

 random reed (value) Sets a value / seed as a starting point for function 
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random(min,max) Allows to return numbers within the range 

specified by min and max values 

Val=random(100,200); //sets ‘val’ to random 

number between 100 to 200 

Example Intr number; //variable to store random value 

int x=10; 

void setup() 

{ 

randomseed (millis()); //set millis() as seed 

number =random(200); //random number from 

0-200 

analogWrite(x,number); //outputs PWM signal 

delay(500); 

} 

Serial Methods Usage 

 Serial.begin(rate) Opens serial port and  sets then baud rate for 

serial data transmission 

Void setup() 

{ 

Serial.begin(9600); //sets default rate to 9600bps 

} 

Serial.println(data) Prints data to the serial port 

Serial.println(value);  //sends the ‘value’ to serial 

monitor 

 

 Differences between Analog, Digital and PWM pins 

 In analog pins, possible states are between 0 to 1023. This allows the users to read sensor 

values. For example, with a light sensor, if it is very dark the reading will be 1023, if it is very 

bright the reading will be 0. If there is a brightness between dark and bright the reading will have 

a value between 0 and 1023. 

 In digital pins there are only two possible states, which are on or off. These can also be 

referred as high or low, 1 or 0 and 5v or 0v. For example, if an LED is on, then its state is High 

or 1 or 5v. If it is off, the values will be Low or 0 or 0v. 

PWM pins are digital pins, so they output either 0 or 5v. however these pins can output “fake” 

intermediate voltage values between 0 and 5v, because they can perform “pulse width 

modulation”(PWM). PWM allows to “simulate” varying levels of power by oscillating the 

output voltage o arduino.  
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INTRODUCTION TO RASPBERRY PI 

The RaspberryPi is a series of credit card sized single board computers developed in the United 

Kingdom by the RaspberryPi foundation to promote the teaching of basic computer science in 

schools and developing countries. 

The later models got popular and are used for various applications such as robotics. Several 

generations of RaspberryPi are released. Some of the specifications of models are tabulated 

below. 

RaspberryPi Model A+ Model B Model B+ 2,Model B Model 3 
Quick 

Summary 

Cheapest, 

smallest 

single board 
computer 

The original 

RaspberryPi 

More USB 

and GPIO 

that the 
B.Ideal 

choice for 

schools 

Most 

advanced 

Raspberry Pi 

Newest with 

wireless 

connectivity 

Chip Broadcom BCM 2835 Broadcom 
BCM 2836 

Broadcom 
BCM2837 

Processor ARMv6 single core ARMv7 quad 

core 

4xARM cortex-

A53 

Processor 

Speed 

700MHz 900MHz 1.2GHz 

Voltage and 

Power draw 

600mA @5V 650mA @5V 

GPU Dual core video core IV Multimedia Co-Processor Broadcom Video 

cone IV 

Size 65x56mm 85x56mm 

Memory 256MB 
SDRAM @ 

400 MHz 

512 MB SDRAM @400MHz 1GB SDRAM 
@ 400MHz 

1GB 
LPDDR2(900MHz) 

Storage Micro SD 

card 

SD card Micro SD card 

GPIO 40 26 40 

USB 2.0 1 2 4 

Ethernet  None  10/100mb Ethernet RJ45Jack 

Wireless  None 2.4GHz 802.11n 

wireless 

Bluetooth None Bluetooth 4.1 

classic, Bluetooth 

Low Energy 

Audio Multi-Channel HD Audio over HDMI, Analog Stereo from 3.5mm Headphone Jack 

Operating  

system 

Raspbian RaspBMC, Arch Linux,rise OS, OpenEL EC Pidora 

Video output HDMI Composite 

Supported 
Resolutions 

640x350 to 1920x1200, including 1080p, PAL &NTSC standards 

Power Source Micro USB 

Table: Technical Specification of Raspberry Pi Models 
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The foundation provides Raspbian, a Debian based Linux distribution for download as well as 

third party ubuntu, windows 10 IOT core, RISC OS and specialized media center distributions.  

Foundation also provides python and scratch as the main programming language with support for 

other languages. 

Why RaspberryPi? 

 Inexpensive 

 Cross-platform 

 Simple clear programming environment 

 Open source and extensible software  

 Open source and extensible hardware 

 

 

Exploring RaspberryPi Learning Board 

The figure shows the Raspberry Pi board labeled. 
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 Processor: The Broadcom BCM2835 Soc is the first generation RaspberryPi. These 

chips are equivalent to the chips used in smart phones. The RaspberryPi 2 uses a 

Broadcom BCM2836 Soc with a 900MHz 32 bit quad core ARM cortex A7 processor 

with 256KB shared L2 cache. 

 Power Source: The easiest way to power the RaspberryPi is through the micro USB port 

on the side of the unit. The recommended input voltage is 5v and input current is 2A. The 

Raspberry Pi can operate on lower power supplies such as 5v @ 1A. Any excessive use 

of the use of the USB ports or heavy CPU loading can cause the voltage drop and 

instability during use. 

 SD card: The working framework is stacked on a SD card space on the RaspberryPi . 

There are no locally available storage accessible for RaspberryPi.  

 GPIO( General Purpose input Output): These are non-specific pins on a co-ordinated 

circuit to know an input or output pin. These can be controlled by the client. GPIO 

capabilities may include 

 GPIO pins can be designed to be input or output 

 GPIO pins can be empowered/crippled  

 Input values are meaningful(normally high=1, low=0) 

 Yield values are writable/meaningful 

 Input values can frequently be utilized as IRQs(regularly for wakeup occasions) 

 In programming environment the GPIO.BOARD points to the pins by the number of the 

pin. The GPIO.BCM points to the pins by the “Broadcom SOC channel” number; these are the 

numbers after “GPIO” in the green rectangles around the outside of the underneath graphs 

 DSI Display X: The Raspberrypi connector S2 is a display serial interface(DSI) for 

connecting a liquid crystal display(LCD) panel using a 15-pin ribbon cable. The mobile 

industry processor interface(MIPI) inside the Broadcom BCM2835 IC feeds graphics 

data directly to the display panel through this connector.  

 Audio Jack: A standard 3.5mm TRS connector is accessible on the RPi for stereo sound 

yield. Any earphone or 3.5mm sound link can be associated straightforwardly. In spite of 

the fact that jack can’t be utilized for taking sound information, USB mics or USB sound 

cards can be utilized. 

 Status LEDs: There are 5 status LEDs on the RPi that demonstrate the status of different 

exercises such as: 

 OK- SD card Access9by means of GPIO16)-named as “OK” on Model B Rev1.0 

sheets and “ACT” on Model B rev2.0 and Model A sheets. 

 POWER- 3.3 power- named as “PWR” on all the boards 

 FDX-Full Duplex(LAN) (Model B)-marked as “FDX” on all the boards 

 LNK-Link/Activity(LAN)(Model B)-marked as “LNK” on all the boards 

 10M/100-10/100Mbit(LAN)(Model B)-named (erroneously) as “10M” on Model 

B Rev 1.0 boards and “100” on model B Rev 2.0 and Model A boards USB ports. 
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There is 1 port on Model A, 2 on Model B and 4 on Model B+ operates at a current upto 

100mA, An external USB powered hub is required to draw current more than 100mA. 

 Ethernet Port: Ethernet port is accessible on Model B and B+. It can be associated with 

a system or web utilizing a standard LAN link on Ethernet port. The Ethernet port are 

controlled by Microchip LAN9512 LAN controller chip. 

 CSI connector(CSI): Camera Serial interface is a serial interface outlined by 

MIPI(Mobile Industry Processor Interface?) organization together went for interfacing 

computerized camera with a portable processor. The RPi establishment gives a camera 

uncommonly made to the Pi which can be associated with the Pi utilizing the CSI 

connector. 

 JTAG(Joint Test Action Group) headers: JTAG association was started in mid 1980s. 

This association was started to address test point get to issues on PCB with surface mount 

gadgets. The association formulated a technique for access to gadget pins by means of a 

serial port that got be distinctly known as the TAP(Test Access Port). In 1990 the strategy 

was turned into a universal standard(IEE std 1149.1). A large number of gadgets now use 

this institutionalized port as a component to permit test and configuration architects to get 

to pins.   

 HDMI: High definition Multimedia interface to give both video and sound yield 

 

RASPBERRYPI OPERATING SYSTEMS 

 Various operating systems can be installed on RaspberryPi through SD cards. Most use a 

MicroSD slot located on the bottom of the board 

 The RaspberyPi primarily uses Raspbian, a debian based Linux operating system 

 Other third party operating systems available via the official website include Ubuntu 

MATE, Snappy Ubuntu core, Windows 10 IoT Core, RISC OS and specilaized 

distribution for the Kodi media center and classroom management. 

 

 Operating systems (not Linux based)  

 RISC OS Pi(a special cut down version RISC OS Pico for 16MB cards and 

large for all models of Pi 1 and 2 has also been made available) 

 FreeBSD 

 NetBSD 

 Plan 9 from Bell Lbs inferno 

 Windows 10 IoT core a no cost edition of windows 10 offered by Microsoft that 

runs natively on the  RaspberryPi 2 

 Xv6-is a modern implementation of sixth edition Unix OS for teaching purpose, 

it is ported to RaspberryPi from MIT Xv6, which can boot NOOBs 

 Haiku-is an open source BeOS clone that can compile for the RaspberryPi and 

several other ARM boards. 
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 Operating systems ( Linux based) 

 Xbian-sing Kodi open source digital media center 

 openSUSE 

 RaspberryPi Fedora remix 

 Pidora another Fedora remix optimized for the raspberryPi 

 Gentoo Linux 

 Diet Pi 

 CentOS\openWrt 

 Kali Linux 

 Ark OS 

 Kano OS 

 Nard SDK 

  

 Media Center Operating systems 

 OSMC 

 OpenELEC 

 LibreELEC 

 Xbian 

 Rasplex 

 Audio Operating systems 

 Volumio 

 Pimusicbox 

 Runeaudio 

 moOdeaudio 

 

 Recalbox  

 Happi Game Center 

 Lakka 

 ChameleonPi 

 Piplay  
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PROGRAMMING RASPBERRY PI WITH PYTHON 

Raspberry Pi runs Linux and supports python out of the box. The general purpose input/output 

capability provided by GPIO pins on Raspberry Pi makes it useful device for Internet of Things. 

Some of the simple python programs are tabulated below 

Program Code 

Print hello world print(“hello world”) 

Program to add 

two numbers 

a=1.2 

b=5.3 

sum=float(a)+float(b) 

print(“the sum of{0} and {1} is {2}”.format(a,b,sum) 

Program to roll a 

dice 

import random 

min=1 

max=6 

roll_again=”yes” 

while roll_again==”yes” or roll_again==”y” 

print(“rolling the dices”) 

print(“the values are”) 

print(random.randomint(min,max)) 

print(random.randint(min,max)) 

 

Program to find 

the IP address of 

Raspberry Pi  

import urllib 

import re 

print(“we will try to open this url,in order to get ip address”) 

url=http://checkup.dyndnd.org 

print(url) 

Program to 

generate 

password 

import string 

from random import* 

characters=string.ascii_letters+string.punctuation+string.digits 

password=””.join(choice(characters)for x in range(randint(8,16))) 

print(password) 

Program to 

generate fibnocci 

series 

a,b=0,1 

while b<200: 

print(b) 

a,b=b,a+b 

Program to check 

for armstrong 

number 

num=int(input(“enter a number:”)) 

initial_sum=0 

temp=num 

while temp>0: 

digit=temp%10 

initial_sum+=digit**3 

temp//=10 

if num==initial_sum; 

print(num,”is an Armstrong number”) 
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else: 

print(num, “is not an Armstrong number”) 

Program to 

display calendar 

of given month of 

the year 

import calendar 

yy=2021 

mm=07 

print(calendar.month(yy,mm)) 

Table: Simple python programs on RaspberryPi 

 

 

RaspberryPi can be interfaced with variety of sensors,actuators using GPIO pins and also SPI, I2C and 

serial interfaces. Input from the RaspberryPi can be processed and action can be taken for instance 

sending data to server, sending an email, triggering a relay switch. Some of the interfacing programs on 

RaspberryPi are tabulated below. 

 

 

Program #1 Printing to a terminal  

Components 

required 

Raspberry Pi +SD card, monitor+HDMI cable, keyboard,mouse and power 

supply, breadboard 

Description Printing a message “hello world” using python programming. To print a greeting 
message to the console. The steps are listed below 

Key points 1. Find your Raspberry Pi 

2. Mount SD card 

3. Plug in the HDMI cable into the Pi and the monitor 
4. Plug in the keyboard into the USB ports 

5. Plug in the mouse into the USB ports 

6. Plug in the power cable 
7. Type in user name “pi” 

8. Type in password “raspberry” 

9. Double click on “terminal” 

10. This will load the “terminal” 
11. Type the following commands 

 Change the directoryby the command $ cd Desktop      

 Create new directory $ mkdir python_code   
 Change directory to python code $ cd python_code 

 Create new file helloworld.py 

 Now enter the given code which is given below 

 Run the python code “sudo python Helloworld.py” 
 You will see it print “hello world” to the screen  

 

Code File:Helloworld.py 
#Access the python working environment 

#!/usr/bin/python 

#print a message Hello world on to the terminal 

print(“Hello World”) 

Output A message “Hello World” will print on the console 
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Program #2 Blinking an LED 

Components 

required 

Raspberry Pi +SD card, monitor+HDMI cable, keyboard, mouse and power supply, 
1Red LED and Blue LED, two 1K resistors, breadboard 

Description Example of controlling the State of LED from ON to OFF and vice versa from 

Raspberry Pi 

the LEDs are connected to GPIO pin 17 and 27 respectively which is initialized as 
output pin 

The state of the Led is toggled by running the two programs given below 

 

Circuit diagram  
 

 

 
 

 

 

 
 

 

 
 

 

Key points 1. Create file “blink.py” 

2. Create file “blink_ever.py” 
3. Enter the above code 

4. Run the python file “sudo python blink.py”<< watch the LEDs blink 2 times 

5. Run the python file “sudo python blink_ever.py”<<watch the LEDs blink 
forever 

Code File: blink.py 

#Access the python working environment 

#!/usr/bin/python 
#import the time module so as to switch LEDs on/off with the time elapsed  

import time 

#import the RPI.GPIO library 

import RPi.GPIO as GPIO 

#use one of the two numbering system either BOARD numbers/BCM 

#Refer to the Channel numbers on the Broadcom SOC 

GPIO.setmode(GPIO.BCM) 

#configure pin 17 as an output 

GPIO.setup(17,GPIO.OUT)   

#configure pin 27 as an output 

GPIO.setup(27,GPIO.OUT)   

#Turn up LEDs on pin 17 

GPIO.output(17,GPIO.HIGH) 
#Turn up LEDs on pin 27 

GPIO.output(27,GPIO.HIGH) 

#wait for 1 second 

time.sleep(1) 
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#turn  LEDs off pin 17 

GPIO.output(17,GPIO.LOW) 

#turn  LEDs off pin 27 

GPIO.output(27,GPIO.LOW) 

#wait for 1 second 

time.sleep(1) 

 

File: blink_ever.py 
#Access the python working environment 

#!/usr/bin/python 

#import the time module so as to switch LEDs on/off with the time elapsed  

import time 
#import the RPI.GPIO library 

import RPi.GPIO as GPIO 

#use one of the two numbering system either BOARD numbers/BCM 
#Refer to the Channel numbers on the Broadcom SOC 

GPIO.setmode(GPIO.BCM) 

#configure pin 17 and 27 as an output pins 

GPIO.setup(17,GPIO.OUT)   

GPIO.setup(27,GPIO.OUT)   

#use while construct which runs infinite number of times there by blinking LEDs 

forever 
while 1: 

            #turn up LEDs on 

            GPIO.output(17,GPIO.HIGH) 

            GPIO.output(27,GPIO.HIGH) 

            time.sleep(1) 

             #turn LEDs off 

            GPIO.output(17,GPIO.LOW) 

            GPIO.output(27,GPIO.LOW) 

            time.sleep(1) 
 

Output LEDs turns on/off twice when blink.py file is executed and LEDs keep changing 

their state forever when blink_forever.py file is executed. 
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Program #3 Push button for physical input 

Components 

required 

Raspberry Pi +SD card, monitor+HDMI cable, keyboard, mouse and power supply, 

1Red LED and Blue LED, two 1K resistors, push button and jumper wires, 

breadboard 

Description Example for controlling an LED with a switch.  

This example shows how to get input from GPIO pins and process the state of LED. 

In the infinite while loop the value of pin 10 is checked and stat of the LED is 
toggled if switch is pressed. 

Circuit diagram  

 

 
 

 

 

 
 

 

 
 

 

 
 

Key points 1. Create file  buton.py 

2. Enter the code 

3. To run the python code “sudo python.py” 

Code File:button.py 

#Access the python working environment 

#!/usr/bin/python 

#import os module to enable interrupts from a push button 
import os 

#import the time module so as to know the time the user as given the input from a 

push button 

import time 

#import the RPI.GPIO library 

import RPi.GPIO as GPIO 
#use one of the two numbering system either BOARD numbers/BCM 

#Refer to the Channel numbers on the Broadcom SOC 

GPIO.setmode(GPIO.BCM) 

#configure pin 10 as input which reads the status of a switch button  

GPIO.setup(10,GPIO.IN) 

#print a message on to the terminal 

print(“Button+GPIO”) 
#read the status of a button from GPIO pin 10 

print GPIO.input(10) 

#run a infinite loop on the status of the button 
while True: 

     if (GPIO.input(10)==True); 

          print(“Button Pressed”) 

       #print the time when the input was given from the push button 
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       os.system(‘date’) 
       #Read the status of a button from GPIO pin 10 

       print GPIO.input(10) 

       #wait for 5 seconds 

       time.sleep(5) 
    else: 

         #clear the system variables 

         os.system(‘clear’) 
         #prompt the user to give an input 

         print(“waiting for you to press a button”) 

time.sleep(1) 

 

Output Press the push button switch to turn ON/OFF LED 

 

Program #4 Interact with the user 

Components 

required 

Raspberry Pi +SD card, monitor+HDMI cable, keyboard, mouse and power supply, 
1Red LED and Blue LED, two 1K resistors, push button and jumper wires, 

breadboard 

Description Example showing how to get input from a user and process the state of the LEDs 
Example shows a python program for controlling the LED by asking the user to 

choose which LED would blink(option “1” for Red and option “2” for Blue) and 

how many times the LED would blink. 

Circuit diagram  
 

 

 
 

 

 

 
 

 

 

Key points 1. Create file “user_input.py” 

2. Enter the code 
3. Run the python file by “sudo python user_input.py”<<Run through the 

questions and make an LED blink 

Code File: user_input.py 

#Access the python working environment 
#!/usr/bin/python 

#import os module to enable interrupts from a push button 

import os 
#import the time module so as to switch LEDs on/off with the time elapsed  

import time 

#import the RPI.GPIO library 

import RPi.GPIO as GPIO 

#use one of the two numbering system either BOARD numbers/BCM 

#Refer to the Channel numbers on the Broadcom SOC 
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GPIO.setmode(GPIO.BCM) 
#configure pin 17 and 27 as an output pins 

GPIO.setup(17,GPIO.OUT)   

GPIO.setup(27,GPIO.OUT)   

 
#initialize variables for user input 

led_ch=0 

counter=0 
 

#clear the python interpreter console 

os.system(‘clear’) 

 

print ”which LED would you like to blink” 

#Accept 1 for Red 

print ”1:Red?” 
#Accept 2 for Blue 

print ”2: Blue? 

 

led_ch=input(“choose your option: ”) 

 

if led_ch==1: 

         #clear the python interpreter console 

         os.system 

         print “you picked the Red LED” 

         counter= input(”How many times would you like to blink?: “) 
         while counter>0: 

                  #on LED on pin 17 

                  GPIO.output(17,GPIO.HIGH) 

                  time.sleep(1) 

                  #off LED on pin 17 

                  GPIO.output(17,GPIO.LOW) 

              time.sleep(1) 
             #record the number of counts on LED 

             counter=counter-1 

if led_ch==2 
        #clear the python interpreter console 

         os.system 

         print “you picked the Blue LED” 

         counter=input(”How many times would you like to blink?: “) 

         while counter>0: 

                  #on LED on pin 27 

                  GPIO.output(27,GPIO.HIGH) 

                  time.sleep(1) 

                  #off LED on pin 27 

                  GPIO.output(27,GPIO.LOW) 

                  time.sleep(1) 

                   #record the number of counts on LED 

                   counter=counter-1 

 

Output LED gets flicked on the inputs given by the user 
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Program #5 BUZZER 

Components 

required 

Raspberry Pi +SD card, monitor+HDMI cable, keyboard, mouse and power supply, 
1Red LED and Blue LED, two 1K resistors, push button and jumper wires, 

breadboard, buzzer 

Description Example of python program for controlling peizo buzzer by reading an input value 
which runs over a loop to beep number of times the user has chosen. Peizo buzzer is 

connected to pin 22 and switch to raspberry pi 

Circuit diagram  

 
 

 

 
 

 

 

 

Key points 1. Create file “buzzer.py” 

2. Enter the code 

3. To run python code “sudo python buzzer.py”<<listen to it beep  

Code File:buzzer.py 

#!/usr/bin/python 

import os 

import time 

import RPi.GPIO as GPIO 

GPIO.setmode(GPIO.BCM) 

GPIO.setwarnings(False) 

GPIO.setup(22,GPIO.OUT) 

loop_counter=0 

def morsecode(): 
              #Dot dot dot       

              GPIO.output(22,GPIO.HIGH) 

              time.sleep(.1) 

              GPIO.output(22,GPIO.LOW) 

              time.sleep(.1) 

              GPIO.output(22,GPIO.HIGH) 

              time.sleep(.1) 

              GPIO.output(22,GPIO.LOW) 

              time.sleep(.1) 

              GPIO.output(22,GPIO.HIGH) 

              time.sleep(.1) 

               

 

              #Dash dash dash 

              GPIO.output(22,GPIO.LOW) 

              time.sleep(.2) 

              GPIO.output(22,GPIO.HIGH) 
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              time.sleep(.2) 

              GPIO.output(22,GPIO.LOW) 

              time.sleep(.2) 

              GPIO.output(22,GPIO.HIGH) 

              time.sleep(.2) 

              GPIO.output(22,GPIO.LOW) 

              time.sleep(.2) 

              GPIO.output(22,GPIO.HIGH) 

              time.sleep(.2) 

              GPIO.output(22,GPIO.LOW) 

              time.sleep(.2) 

 
              #Dot dot dot      

              GPIO.output(22,GPIO.HIGH) 

              time.sleep(.1) 

              GPIO.output(22,GPIO.LOW) 

              time.sleep(.1) 

              GPIO.output(22,GPIO.HIGH) 

              time.sleep(.1) 

              GPIO.output(22,GPIO.LOW) 

              time.sleep(.1) 

              GPIO.output(22,GPIO.HIGH) 

              time.sleep(.1) 

              GPIO.output(22,GPIO. LOW) 

              time.sleep(.7) 

os.system(‘clear’) 

print ”Morse code” 

loop_count=input(“how many times would you like SOS to loop?: ”) 

while loop_count>0: 

        loop_counter=loop_counter-1 

        morsecode() 

 
 

Output Listen to beep of peizo buzzer 
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Program #6 Temperature Sensor 

Components 

required 

Raspberry Pi +SD card, monitor+HDMI cable, keyboard, mouse and power supply, 
1Red LED and Blue LED, two 1K resistors, push button and jumper wires, 

breadboard, buzzer, LM35 temperature sensor 

Description  

Circuit diagram  
 

 

 
 

 

 
 

 

 

Key points  

Code import os 

import glob 

import time 
#initialise the device 

os.system(‘modprobe w1-gpio’) 

os.system(‘modprobe w1-therm’) 

 
base_dir=’/sys/bus/w1/devices/’ 

device_folder=glob.glob(base_dir+’28*’)[0] 

device_file=device_folder+’/w1_slave’ 
 

def read_temp_raw(): 

f=open(device_file,’r’) 
lines=f.readlines() 

f.close() 

return lines 

 
def read_temp(): 

 lines=read_temp_raw() 

while lines[0].strip()[-3:]!=’YES’: 
 time.sleep(0.2) 

 lines=read_temp_raw() 

equals_pos=lines[1].find(‘t=’) 

if equals_pos!=-1: 
temp_string=lines[1][equals_pos+2:] 

temp_c=float(temp_string)/1000.0 

temp_f=temp_c*9.0/5.0+32.0 
return temp_c,temp_f 

 

while True: 
     print(read_temp()) 

     time.sleep(1) 

 

Output Current room temperature is recorded 
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Program #7 Light Sensor 

Components 

required 

Raspberry Pi +SD card, monitor+HDMI cable, keyboard, mouse and power supply, 

1Red LED and Blue LED, two 1K resistors, push button and jumper wires, 

breadboard, buzzer, LM35 temperature sensor, LDR light dependant sensor 

Description An example involving an LDR sensor which reads the intensity of light and records 

it a text files. 

This example shows how to get an analog input from GPIO pins and process the 
input. 

An infinite loop runs over the sensor which records intensity of light with date  and 

time stamps every second. 

 

Circuit diagram  

 

 

 
 

 

 
 

 

 

Key points 1. Create file “ldr.py” an “touch foo.text” 
2. To run the python code “sudo python ldr.py”<<see what the light levels in 

the room are 

3. Check the file “more foo.txt” to check the result 
   

Code File:ldr.py 

#!/usr/bin/env python 

import os 

import datetime 

import time 

import RPi.GPIO as GPIO 

DEBUGER = 1 

GPIO.setmode(GPIO.BCM) 

def RCtimer(RCpins) 

      readings=0 

      GPIO.setup(RCpins, GPI.OUT) 

      GPIO.output(RCpins, GPIO.LOW) 

      time.sleep(.1) 

  GPIO.setup(RCpins,GPIO.IN) 

  #iterates 1 miliseconds over one cycle 

  while(GPIO.input(RCpins)==GPIO.LOW): 

      readings+=1 

  return readings 

while True: 
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               GetDateTime=datetime.datetime.now().strftime(“%Y-%m-

%d%H:%M:%S”)\ 

               LDRreading=RCtimes(3) 

               Print RCtimes(3) 

               #open a file 

               fo=open(“/home/pi/10x10/foo.txt”,”wb”) 

               fo.write(GetDateTime) 

               LDRReading=str(LDRReading) 

               fo.write(“\n”) 

               fo.write(LDRReading) 

 

               #close opened file 

               fo.close() 

               time.sleep(1) 

 

Output Intensity of the light in the room is recorded on to a terminal as well as to text file 

 

 

Program #8 Passive Inferred Sensor 

Components 

required 

Raspberry Pi +SD card, monitor+HDMI cable, keyboard, mouse and power supply, 

1Red LED and Blue LED, two 1K resistors, push button and jumper wires, 

breadboard, buzzer, LM35 temperature sensor, LDR light dependant sensor, 

Description An example involving an PIR sensor which detects the motion of an object.  
This example shows how to get an analog input from GPIO pins and process the 

input.  

An infinite loop runs over the PIR sensor which waits for any of the movements 
across its boundary. 

 

Circuit diagram  

 
 

 

 
 

 

 
 

 

 

Key points 1. Create file “touch python pir.py” 

2. To run the python code “sudo python pir.py”<< Move in front of the PIR to 
activate it 

Code File:PIR.py 

#!/usr/bin/env python 

import RPi.GPIO as GPIO 

import time 

GPIO.setmode(GPIO.BCM) 
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GPIO.setup(27,GPIO.OUT) 

GPIO_PIR_sensor=7 

 

print “PIR Module Test (CTRL-C to exit)” 

#configure pin to be input 

GPIO.setup(GPIO_PIR_sensor,GPIO.IN) 

 

Currentstate=0 

PreviousState=0 

 

try: 

 print “waiting for PIR to settle..” 
 #iterate till PIR outputs the value 0 

 while GPIO.input(GPIO_PIR_sensor)==1: 

  CurrentState=0 

print “Ready” 

#iterate until user types CTRL-C 

while True: 
 #status of the PIR to be read 

 CurrentState=GPIO.input(GPIO_PIR_sensor) 

 if CurrentState==1 and PreviousState==0 

 #trigger action on PIR 

   print “Motion detected!” 

#Previous status of the PIR to be recorded 

GPIO.output(27,GPIO.HIGH) 

time.sleep(1) 

GPIO.output(27,GPIO.LOW) 

PreviousState=1 

elif CurrentState==0 and PreviousState==1: 

#check if PIR has arrived to the ready state 

print “Ready” 

PreviousState=0 
#stop for 10 milliseconds 

time.sleep(0.01) 

except KeyboardInterrupt: 

print “Quit” 

#GPIO settings to be eset 

GPIO.cleanup() 

Output Move in front of the PIR to activate it and sensor generates a message 
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CHAPTER-2 

SMART AND CONNECTED CITIES 

 

SMART CITY IOT ARCHITECTURE 

A smart city IoT infrastructure is a four-layered architecture, as shown in 

Figure. Data flows from devices at the street layer to the city network layer and connect to the 

data center layer, where the data is aggregated, normalized, and virtualized. The data center layer 

provides information to the services layer, which consists of the applications that provide 

services to the city. 

Figure: Smart city layered architecture 

 Street Layer: The street layer is composed of devices and sensors that collect data and 

take action based on instructions from the overall solution, as well as the networking 

components needed to aggregate and collect data. Sensor devices are able to detect and 

measure events in the physical world. A variety of sensors are used at the street layer for 

a variety of smart city use cases such as A magnetic sensor can detect a parking event, An 

air quality sensor, A lighting controller, Video cameras etc. The choice of sensor 

technology depends on the exact nature of the problem, the accuracy and cost trade-offs 

appropriate for it, and any installation limitations posed by the physical environment. 

 City Layer: At the city layer, which is above the street layer, network routers and 

switches must be deployed to match the size of city data that needs to be transported. 

This layer aggregates all data collected by sensors and the end-node network into a single 

transport network. One key consideration of the city layer is that it needs to transport 

multiple types of protocols, for multiple types of IoT applications. The city layer must be 

built around resiliency, to ensure that a packet coming from a sensor or a gate-way will 

always be forwarded successfully to the headend station. Figure shows one such 
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approach. In this model, at least two paths exist from any aggregation switch to the data 

center layer. A common protocol used to ensure this resiliency is Resilient Ethernet 

Protocol (REP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: Street layer resiliency 

 Data Center Layer: Ultimately, data collected from the sensors is sent to a data center, 

where it can be processed and correlated. Based on this processing of data, meaningful 

information and trends can be derived, and information can be provided back. The key 

technology in creating any comprehensive smart solution with services is the cloud. With 

a cloud infrastructure, data is not stored in a data center owned directly or indirectly by 

city authorities. Instead, data is stored in rented logical containers accessed through the 

Internet. This proximity and flexibility also facilitate the ex-change of information 

between smart systems and allow for the deployment of new applications that can 

leverage information from several IoT systems. Figure shows the vision of utilizing the 

cloud in smart solutions for cities. The cloud provides a scalable, secure, and reliable data 

processing engine that can handle the immense amount of data passing through it. 

However, not all data is processed in the central cloud-based data center. Most of the 

real-time and locally significant data can be directly processed at the edge of the network, 

leveraging a fog architecture 
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Figure: The role of cloud for smart city applications 

 Services Layer: Ultimately, the true value of ICT connectivity comes from the services 

that the measured data can provide to different users operating within a city. Smart city 

applications can provide value to and visibility for a variety of user types, including city 

operators, citizens, and law enforcement. The collected data should be visualized 

according to the specific needs of each consumer of that data and the particular user 

experience requirements and individual use cases. For example, parking data indicating 

which spots are and aren’t currently occupied can drive a citizen parking app with a map 

of available spots. 

The architecture provides application developers and sensor vendors with the tools necessary to 

innovate and invent new community experiences via open APIs, software development kits 

(SDKs), city information models, and more to develop city-qualified applications that drive high-

value smart city services. 

SMART CITY SECURITY ARCHITECTURE 

Security architecture for smart cities must utilize security protocols to fortify each layer of the 

architecture and protect city data. Figure shows reference architecture, with specific security 

elements high-lighted. Security protocols should authenticate the various components and protect 

data transport throughout. The security architecture should be able to evolve with the latest 

technology and incorporate regional guidelines. Network partners may also have their own 

compliance standards, security policies, and governance requirements that need to be added to 

the local city requirements. 
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Figure: Key Smart and Connected Cities Reference Architecture 

 Starting from the street level, sensors should have their own security protocols. Some 

industry-standard security features include device/sensor identification and authorization; 

device/sensor data encryption. Another consideration may be the type of data that the 

sensor is able to collect and process.  

 Data should be secured both at rest and in motion, but when data is stored, additional 

security needs to be put in place to ensure that information will not be tampered with, 

abused, or stolen. 

 The city layer transports data between the street layer and the data center layer. It acts as 

the network layer.  

 The following are common industry elements for security on the network layer. 

 Firewall: A firewall is located at the edge, and it should be IPsec- and VPN-

ready, and include user- and role-based access control. It should also be integrated 

with the architecture to give city operators remote access to the city data center. 

 VLAN: A VLAN provides end-to-end segmentation of data transmission, further 

protecting data from rogue intervention. Each service/domain has a dedicated 

VLAN for data transmission. 

 Encryption: Protecting the traffic from the sensor to the application is a common 

requirement to avoid data tampering and eavesdropping. 
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SMART CITY USE-CASE EXAMPLES 

The following sections examine some of the applications commonly used as starting points to 

implement IoT in smart cities: connected street lighting, smart parking, smart traffic control, and 

connected environment. 

 Connected Street Lighting 

Street lighting comprises one of the largest expenses in a municipality’s utility bill. 

Maintenance of street lights is an operational challenge, given the large number of lights 

and their vast geographic distribution. 

Connected Street Lighting Solution:Cities commonly look for solutions to help 

reduce lighting expenses and at the same time improve operating efficiencies while 

minimizing upfront investment. In this regard, light-emitting diode (LED) technology 

leads the transition from traditional street lighting to smart street lighting.  

--LEDs require less energy to produce more light than legacy lights, and they have a 

much longer life span and a longer maintenance cycle. 

--A leading lighting company estimates that a complete switch to LED technology can 

reduce individual light bills by up to 70%. 

--LEDs are well suited to smart solution use cases. 

Street Lighting Architecture 

Connected lighting uses a light management application to manage streetlights remotely 

by connecting to the smart city’s infrastructure. This application attaches to LED lights, 

monitors their management and maintenance, and allows you to view the operational 

status of each light. In most cases, a sensor gateway acts as an intermediate system 

between the application and the lights (light control nodes). The gateway relays 

instructions from the application to the lights and stores the local lights’ events for the 

application’s consumption. The controller and LED lights use the cloud to connect to the 

smart city’s infrastructure, as shown in Figure. A human or automated operator can use a 

cloud application to perform automated scheduling for lights and even get light sensors to 

perform automated dimming or brightening, as needed. The schedule can also impact the 

light intensity level and possibly the color, depending on environ-mental conditions, 

weather, time of year, time of day, location within the city, and so on 
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Figure: Connected Lighting Architecture 

 

 Smart Parking 

Parking is a universal challenge for cities around the globe. Ineffective parking access 

and administration make parking in urban areas a constant struggle and affect cities in 

many ways. 

 Smart Parking Use Cases: Added traffic congestion is one consequence of drivers 

looking for parking space, and it has several consequences. 

 Contributes to pollution 

 Causes motorist frustration 

 Increases traffic incidents 

 Cities often lose revenue 

 Parking administration employee productivity suffers 

 Parking availability affects income 

 Smart Parking Architecture: A variety of parking sensors are available on the 

market, and they take different approaches to sensing occupancy for parking spots. In 

high-density environments (for example, indoor parking, parking decks), one or 

several gateways per floor may connect to the parking sensors, using shorter-range 

protocols such as ZigBee or Wi-Fi. The gateway may then use an-other protocol 

(wired or wireless) to connect to the control station. In larger (for example, outdoor) 

environments, a longer-range Low Power Wide Area (LPWA) protocol is common, 

as shown in Figure 
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Figure: Connected Parking Architecture 

Regardless of the technology used, parking sensors are typically event-driven objects. 

A sensor detects an event and identifies it based on time or analysis. The event is 

transmitted through the device’s communication protocol to an access point or 

gateway, which forwards the event data through the city layer. The gateway sends it 

to the cloud or a fog application, where it is normalized. An application shows the 

parking event on operator dashboards, or personal smart phones, where an action can 

be taken. 

Smart parking has three users that applications must support through aggregated data: 

city operators, parking enforcement personnel, and citizens. The following are some 

potential user experiences for these three user types. 

 City operators: These users might want a high-level map of parking in the 

city to maintain perspective on the city’s ongoing parking situation. They 

would also need information on historical parking data patterns to understand 

congestion and pain points in order to be able to effectively influence urban 

planning. 

 Parking enforcement officers: These users might require real-time updates 

on parking changes in a certain area to be able to take immediate action on 

enforcement activities, such as issuing tickets or sending warnings to citizens 

whose time is nearing expiration. 

 Citizens: These users might want an application with a map (such as a built-in 

parking app in their car) showing available parking spots, reservation 

capabilities, and online payment. Their focus would be on minimizing the 

time to get a parking spot and avoiding parking tickets. 
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 Smart Traffic Control 

Traffic is one the most well-understood pain points for any city. It is the leading cause of 

accidental death globally, causes immense frustration, and heavily contributes to 

pollution around the globe. A smart city traffic solution would combine crowd counts, 

transit information, vehicle counts, and so on and send events regarding incidents on the 

road so that other controllers on the street could take action. 

 

Smart Traffic Control Architecture 

 
Figure: Smart city Traffic architecture 

 

In the architecture shown in Figure, a video analytics sensor computes traffic events 

based on a video feed and only pushes events (the car count, or metadata, not the 

individual images) through the network. These events go through the architectural layers 

and reach the applications that can drive traffic services. These services include traffic 

light co-ordination and also license plate identification for toll roads. Some sensors can 

also recognize abnormal patterns, such as vehicles moving in the wrong direction or a 

reserved lane. In that case, the video feed itself may be uploaded to traffic enforcement 

agencies. 

Other types of sensors that are part of traffic control solutions include Bluetooth vehicle 

counters, real-time speed and vehicle counters, and lighting control systems. These 

sensors provide a real-time perspective while also offering data collection services for 

historical data trending and correlation purposes. Communication techniques are as 

varied as sensor form factors. 
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 Connected Environment 

More than 90%of the world’s urban population breathes in air with pollutant levels that 

are much higher than the recommended thresholds, and one out of every eight deaths 

worldwide is a result of polluted air. 

 The Need for a Connected Environment 

Most large cities monitor their air quality. Data is often derived from enormous air 

quality monitoring stations that are expensive and have been around for decades. Given 

the price and size of air quality monitoring stations, cities cannot afford to purchase the 

number of stations required to give accurate reports on a localized level and follow the 

pollution flows as they move through the city over time. 

To fully address the air quality issues in the short term and the long term, a smart city 

would need to understand air quality on a hyper-localized, real-time, distributed basis at 

any given moment. To get those measurements, smart cities need to invest in the 

following: 

 Open-data platforms that provide current air quality measurements from existing 

air quality monitoring stations 

 Sensors that provide similar accuracy to the air quality stations but are available at 

much lower prices 

 Actionable insights and triggers to improve air quality through cross-domain 

actions 

 Visualization of environmental data for consumers and maintenance of historical 

air quality data records to track emissions over time 

Connected Environment Architecture 

As shown in Figure, at the street layer there are a variety of multivendor sensor offerings, 

using a variety of communication protocols. Connected environment sensors might 

measure different gases, depending on a city’s particular air quality issues, and may 

include weather and noise sensors. These sensors may be located in a variety of urban 

fixtures, such as in street lights, as explained earlier. They may also be embedded in the 

ground or in other structures or smart city infrastructure. Even mo-bile sources of 

information can be included through connected wearables that citizens might choose to 
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purchase and carry with them to understand the air quality around them at any given 

moment. Crowd sourcing may make this information available to the global system. 

Communication technologies depend on the location of the sensors. Wearables typically 

communicate via a short-range technology (such as Bluetooth) with a nearby collecting 

device (such as a phone) 

Independent and standalone sensors typically use wireless technologies. In dense urban 

environments, ZigBee and Wi-Fi are common. In addition to all the air quality sensor and 

wearable data, the data center layer or application layer represented on the left side of 

Figure also receives the open data from existing weather stations as an additional data 

input. All these data inputs come together to provide a highly accurate sense of the air 

quality in the city at any given moment. This information can be visualized in 

applications that include heat maps of particulates, concentrates, and specific information 

on the dangers of such gaseous anomalies. Different pollution levels can be 

communicated, and gases can be tracked as they move throughout the city, either because 

of the wind or because of the movement of gas sources. From this pollution and 

environmental data and the analytics applied to it, the city can track problem areas and 

take action in long-term urban planning to reduce the effects of air quality disturbances. 


