
Internet of Things 18EC64

Page 1

MODULE 1

Internet of Things 18EC64

Page 2

What Is IoT?

IoT is a technology transition in which devices will allow us to sense and control the physical

world by making objects smarter and connecting them through an intelligent network.

GOAL: The basic premise and goal of IoT is to ―connect the unconnected.‖ This means that

objects that are not currently joined to a computer network, namely the Internet, will be conn

ected so that they can communicate and interact with people and other objects.

When objects and machines can be sensed and controlled remotely across a network, a tighter

integration between the physical world and computers is enabled.

This allows for improvements in the areas of efficiency, accuracy, automation, and the enable

ment of advanced applications.

GENESIS OF IOT

The person credited with the creation of the term ―Internet of Things‖ is Kevin Ashton. While

working for Procter & Gamble in 1999, Kevin used this phrase to explain a new idea related

to linking the company‘s supply chain to the Internet.

INTELLIGENT CONNECTIONS

The evolution of the Internet can be categorized into four phases. Each of these phases has

had a profound impact on our society and our lives. These four phases are further defined in

Table below.

Internet of Things 18EC64

Page 3

IOT AND DIGITIZATION

IoT and digitization are terms that are often used interchangeably. In most contexts,

this duality is fine, but there are key differences to be aware of.

At a high level, IoT focuses on connecting ―things,‖ such as objects and machines, to

a computer network, such as the Internet. IoT is a well-understood term used across the

industry as a whole. On the other hand, digitization can mean different things to different

people but generally encompasses the connection of ―things‖ with the data they generate and

the business insights that result.

Digitization, as defined in its simplest form, is the conversion of information into a

digital format. Digitization has been happening in one form or another for several decades.

For example, the whole photography industry has been digitized. Pretty much everyone has

digital cameras these days, either standalone devices or built into their mobile phones.

Almost no one buys film and takes it to a retailer to get it developed. The digitization of

photography has completely changed our experience when it comes to capturing images.

CONVERGENCE OF IT AND OT

Until recently, information technology (IT) and operational technology (OT) have for

the most part lived in separate worlds. IT supports connections to the Internet along with

related data and technology systems and is focused on the secure flow of data across an

organization. OT monitors and controls devices and processes on physical operational

systems. These systems include assembly lines, utility distribution networks, production

facilities, roadway systems, and many more. Typically, IT did not get involved with the

production and logistics of OT environments.

Management of OT is tied to the lifeblood of a company. For example, if the network

connecting the machines in a factory fails, the machines cannot function, and production may

come to a standstill, negatively impacting business on the order of millions of dollars. On the

other hand, if the email server (run by the IT department) fails for a few hours, it may irritate

people, but it is unlikely to impact business at anywhere near the same level. Table below

highlights some of the differences between IT and OT networks and their various

challenges.

Internet of Things 18EC64

Page 4

IOT CHALLENGES

The most significant challenges and problems that IoT is currently facing are

Internet of Things 18EC64

Page 5

IoT Network Architecture and Design

The unique challenges posed by IoT networks and how these challenges have driven new

architectural models.

Drivers Behind New Network Architectures

Comparing IoT Architectures.

A Simplified IoT Architecture
The Core IoT Functional Stack

IoT Data Management and Compute Stack

DRIVERS BEHIND NEW NETWORK ARCHITECTURES

This begins by comparing how using an architectural blueprint to construct a house is similar

to the approach we take when designing a network. Take a closer look at some of the

differences between IT and IoT networks, with a focus on the IoT requirements that are

driving new network architectures, and considers what adjustments are needed.

Internet of Things 18EC64

Page 6

Internet of Things 18EC64

Page 7

COMPARING IOT ARCHITECTURES

The oneM2M IoT Standardized Architecture

In an effort to standardize the rapidly growing field of machine-to-machine (M2M)

communications, the European Telecommunications Standards Institute (ETSI) created the

M2M Technical Committee in 2008. The goal of this committee was to create a common

architecture that would help accelerate the adoption of M2M applications and devices. Over

time, the scope has expanded to include the Internet of Things.

One of the greatest challenges in designing an IoT architecture is dealing with the

heterogeneity of devices, software, and access methods. By developing a horizontal platform

architecture, oneM2M is developing standards that allow interoperability at all levels of the

IoT stack

The Main Elements of the oneM2M IoT Architecture

The oneM2M architecture divides IoT functions into three major domains: the application

layer, the services layer, and the network layer

 Applications layer: The oneM2M architecture gives major attention to connectivity

between devices and their applications. This domain includes the application-layer

protocols and attempts to standardize northbound API definitions for interaction with

business intelligence (BI) systems. Applications tend to be industry-specific and have

their own sets of data models, and thus they are shown as verticalentities.

 Services layer: This layer is shown as a horizontal framework across the vertical

industry applications. At this layer, horizontal modules include the physical network

that the IoT applications run on, the underlying management protocols, and the

hardware. Examples include backhaul communications via cellular, MPLS networks,

VPNs, and so on. Riding on top is the common services layer.

 Network layer: This is the communication domain for the IoT devices and endpoints.

It includes the devices themselves and the communications network that links them.
Embodiments of this communications infrastructure include wireless mesh

technologies, such as IEEE 802.15.4, and wireless point-to-multipoint systems, such

as IEEE 801.11ah.

Internet of Things 18EC64

Page 8

The IoT World Forum (IoTWF) Standardized Architecture

This publish a seven-layer IoT architectural reference model.

 While various IoT reference models exist, the one put forth by the IoT World Forum

offers a clean, simplified perspective on IoT and includes edge computing, data

storage, and access. It provides a succinct way of visualizing IoT from a technical

perspective. Each of the seven layers is broken down into specific functions, and

security encompasses the entire model.

Using this reference model, we are able to achieve the following:

1. Decompose the IoT problem into smaller parts

2. Identify different technologies at each layer and how they relate to one another

3. Define a system in which different parts can be provided by different vendors

4. Have a process of defining interfaces that leads to interoperability

5. Define a tiered security model that is enforced at the transition points between levels

Layer 1: Physical Devices and Controllers Layer

The first layer of the IoT Reference Model is the physical devices and

controllers layer. This layer is home to the ―things‖ in the Internet of Things,

including the various endpoint devices and sensors that send and receive information.

The size of these ―things‖ can range from almost microscopic sensors to giant

machines in a factory. Their primary function is generating data and being capable of

being queried and/or controlled over a network.

Internet of Things 18EC64

Page 9

Layer 2: Connectivity Layer

In the second layer of the IoT Reference Model, the focus is on connectivity.

The most important function of this IoT layer is the reliable and timely transmission

of data. More specifically, this includes transmissions between Layer 1 devices and

the network and between the network and information processing that occurs at Layer

3 (the edge computing layer).

.

IoT Reference Model Connectivity Layer Functions

Layer 3: Edge Computing Layer

Edge computing is the role of Layer 3. Edge computing is often referred to as

the ―fog‖ layer and is discussed in the section ―Fog Computing,‖ later in this chapter.

At this layer, the emphasis is on data reduction and converting network data flows

into information that is ready for storage and processing by higher layers. One of the

basic principles of this reference model is that information processing is initiated as

early and as close to the edge of the network as possible

IoT Reference Model Layer 3 Functions

https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch02.html#ch02lev2sec12

Internet of Things 18EC64

Page 10

Another important function that occurs at Layer 3 is the evaluation of data to see if it

can be filtered or aggregated before being sent to a higher layer. This also allows for

data to be reformatted or decoded, making additional processing by other systems

easier. Thus, a critical function is assessing the data to see if predefined thresholds are

crossed and any action or alerts need to be sent.

Upper Layers: Layers 4–7

The upper layers deal with handling and processing the IoT data generated by
the bottom layer. For the sake of completeness, Layers 4–7 of the IoT Reference

Model are summarized in Table .

Internet of Things 18EC64

Page 11

IT and OT Responsibilities in the IoT Reference Model

An interesting aspect of visualizing an IoT architecture this way is that you can start to organize

responsibilities along IT and OT lines. Figure illustrates a natural demarcation point between IT and

OT in the IoT Reference Model framework.

Figure: IoT Reference Model Separation of IT and OT

As demonstrated in Figure, IoT systems have to cross several boundaries beyond just the functional

layers. The bottom of the stack is generally in the domain of OT. For an industry like oil and gas, this

includes sensors and devices connected to pipelines, oil rigs, refinery machinery,

and so on. The top of the stack is in the IT area and includes things like the servers, databases, and

applications, all of which run on a part of the network controlled by IT. In the past, OT and IT have

generally been very independent and had little need to even talk to each other. IoT is changing

that paradigm. At the bottom, in the OT layers, the devices generate real-time data at their own rate—

sometimes vast amounts on a daily basis. Not only does this result in a huge amount of data transiting

the IoT network, but the sheer volume of data suggests that applications at the top layer will be

able to ingest that much data at the rate required. To meet this requirement, data has to be buffered or

stored at certain points within the IoT stack. Layering data management in this way throughout the

stack helps the top four layers handle data at their own speed.

As a result, the real-time ―data in motion‖ close to the edge has to be organized and stored so that it

becomes ―data at rest‖ for the applications in the IT tiers. The IT and OT organizations need to work

together for overall data management.

Internet of Things 18EC64

Page 12

Additional IoT Reference Models

In addition to the two IoT reference models already presented, several other reference models exist.

These models are endorsed by various organizations and standards bodies and are often specific to

certain industries or IoT applications. Table highlights these additional IoT reference models.

Internet of Things 18EC64

Page 13

A SIMPLIFIED IOT ARCHITECTURE

Simplified IoT Architecture

THE CORE IOT FUNCTIONAL STACK

IoT networks are built around the concept of ―things,‖ or smart objects performing

functions and delivering new connected services. These objects are ―smart‖ because they use
a combination of contextual information and configured goals to perform actions.

From an architectural standpoint, several components have to work together for an IoT

network to be operational:

―Things‖ layer:
Communications network layer

Access network sublayer

Gateways and backhaul network sublayer

Network transport sublayer

IoT network management sublayer

Application and analytics layer

The following sections examine these elements and help you architect your IoT
communication network.

Layer 1: Things: Sensors and Actuators Layer

―Smart Objects: The ‗Things‘ in IoT,‖ provides more in-depth information about

smart objects. From an architectural standpoint, the variety of smart object types, shapes, and

needs drive the variety of IoT protocols and architectures. One architectural classification

could be:

 Battery-powered or power-connected: This classification is based on whether the

object carries its own energy supply or receives continuous power from an external

power source.

 Mobile or static: This classification is based on whether the ―thing‖ should move or

always stay at the same location. A sensor may be mobile because it is moved from

one object to another or because it is attached to a movin

 Low or high reporting frequency: This classification is based on how often the

object should report monitored parameters. A rust sensor may report values once a
month. A motion sensor may report acceleration several hundred times per second.

https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch03.html#ch03

Internet of Things 18EC64

Page 14

 Simple or rich data: This classification is based on the quantity of data exchanged at
each report cycle

 Report range: This classification is based on the distance at which the gateway is

located. For example, for your fitness band to communicate with your phone, it needs

to be located a few meters away at most.

 Object density per cell: This classification is based on the number of smart objects

(with a similar need to communicate) over a given area, connected to the same

gateway.

Below figure provides some examples of applications matching the combination of mobility

and throughput requirements.

Example of Sensor Applications Based on Mobility and Throughput

Internet of Things 18EC64

Page 15

Layer 2: Communications Network Layer

Once you have determined the influence of the smart object form factor over its
transmission capabilities (transmission range, data volume and frequency, sensor density and
mobility), you are ready to connect the object and communicate.

Compute and network assets used in IoT can be very different from those in IT environments.

The difference in the physical form factors between devices used by IT and OT is obvious

even to the most casual of observers. What typically drives this is the physical environment in

which the devices are deployed. What may not be as inherently obvious, however, is their

operational differences. The operational differences must be understood in order to apply the

correct handling to secure the target assets.

Access Network Sublayer

There is a direct relationship between the IoT network technology you choose and the

type of connectivity topology this technology allows. Each technology was designed with a

certain number of use cases in mind (what to connect, where to connect, how much data to

transport at what interval and over what distance). These use cases determined the frequency

band that was expected to be most suitable, the frame structure matching the expected data

pattern (packet size and communication intervals), and the possible topologies that these use

cases illustrate.

One key parameter determining the choice of access technology is the range between the

smart object and the information collector. Figure 2-9 lists some access technologies you may
encounter in the IoT world and the expected transmission distances.

Access Technologies and Distances

https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch02.html#ch02fig09

Internet of Things 18EC64

Page 16

 Range estimates are grouped by category names that illustrate the environment or the

vertical where data collection over that range is expected. Common groups are as

follows:

PAN (personal area network): Scale of a few meters. This is the personal space around a

person. A common wireless technology for this scale is Bluetooth.

HAN (home area network): Scale of a few tens of meters. At this scale, common wireless
technologies for IoT include ZigBee and Bluetooth Low Energy (BLE).

NAN (neighborhood area network): Scale of a few hundreds of meters. The term NAN is

often used to refer to a group of house units from which data is collected.

FAN (field area network): Scale of several tens of meters to several hundred meters. FAN

typically refers to an outdoor area larger than a single group of house units. The FAN is often

seen as ―open space‖ (and therefore not secured and not controlled).

LAN (local area network): Scale of up to 100 m. This term is very common in

networking, and it is therefore also commonly used in the IoT space when standard

networking technologies (such as Ethernet or IEEE 802.11) are used.

 Similar ranges also do not mean similar topologies. Some technologies offer flexible

connectivity structure to extend communication possibilities:

Point-to-point topologies

Point-to-multipoint

Star and Clustered Star Topologies

Internet of Things 18EC64

Page 17

Comparison of the main solutions from an architectural angle.

Architectural Considerations for WiMAX and Cellular Technologies

Layer 3: Applications and Analytics Layer

Once connected to a network, your smart objects exchange information with other

systems. As soon as your IoT network spans more than a few sensors, the power of the

Internet of Things appears in the applications that make use of the information exchanged

with the smart objects.

Internet of Things 18EC64

Page 18

Analytics Versus Control Applications

Multiple applications can help increase the efficiency of an IoT network. Each

application collects data and provides a range of functions based on analyzing the collected

data. It can be difficult to compare the features offered. From an architectural standpoint, one

basic classification can be as follows:

Analytics application: This type of application collects data from multiple smart objects,

processes the collected data, and displays information resulting from the data that was

processed. The display can be about any aspect of the IoT network, from historical reports,

statistics, or trends to individual system states. The important aspect is that the application

processes the data to convey a view of the network that cannot be obtained from solely

looking at the information displayed by a single smart object.

Control application: This type of application controls the behavior of the smart object or

the behavior of an object related to the smart object. For example, a pressure sensor may be

connected to a pump. A control application increases the pump speed when the connected

sensor detects a drop in pressure. Control applications are very useful for controlling complex

aspects of an IoT network with a logic that cannot be programmed inside a single IoT object,

either because the configured changes are too complex to fit into the local system or because

the configured changes rely on parameters that include elements outside the IoT object.

Data Versus Network Analytics

Analytics is a general term that describes processing information to make sense of collected
data. In the world of IoT, a possible classification of the analytics function is as follows:

Data analytics: This type of analytics processes the data collected by smart objects and

combines it to provide an intelligent view related to the IoT system. At a very basic level, a

dashboard can display an alarm when a weight sensor detects that a shelf is empty in a store.

In a more complex case, temperature, pressure, wind, humidity, and light levels collected

from thousands of sensors may be combined and then processed to determine the likelihood

of a storm and its possible path .

Network analytics: Most IoT systems are built around smart objects connected to the

network. A loss or degradation in connectivity is likely to affect the efficiency of the system.

Such a loss can have dramatic effects. For example, open mines use wireless networks to

automatically pilot dump trucks. A lasting loss of connectivity may result in an accident or

degradation of operations efficiency (automated dump trucks typically stop upon connectivity

loss). On a more minor scale, loss of connectivity means that data stops being fed to your

data analytics platform, and the system stops making intelligent analyses of the IoT system.

Data Analytics Versus Business Benefits

Data analytics is undoubtedly a field where the value of IoT is booming. Almost any object

can be connected, and multiple types of sensors can be installed on a given object. Collecting

and interpreting the data generated by these devices is where the value of IoT is realized.

Smart Services

 The ability to use IoT to improve operations is often termed ―smart services.‖ This

term is generic, and in many cases the term is used but its meaning is often stretched

to include one form of service or another where an additional level of intelligence is

provided.

Internet of Things 18EC64

Page 19

 Smart services can also be used to measure the efficiency of machines bydetecting
machine output, speed, or other forms of usage evaluation.

 Smart services can be integrated into an IoT system. For example, sensors can be

integrated in a light bulb. A sensor can turn a light on or off based on the presence of
a human in the room.

IOT DATA MANAGEMENT AND COMPUTE STACK

This model also has limitations. As data volume, the variety of objects connecting to

the network, and the need for more efficiency increase, new requirements appear, and those

requirements tend to bring the need for data analysis closer to the IoT system. These new

requirements include the following:

Minimizing latency: Milliseconds matter for many types of industrial systems, such as

when you are trying to prevent manufacturing line shutdowns or restore electrical service.

Analyzing data close to the device that collected the data can make a difference between

averting disaster and a cascading system failure.

Conserving network bandwidth: Offshore oil rigs generate 500 GB of data weekly.

Commercial jets generate 10 TB for every 30 minutes of flight. It is not practical to transport

vast amounts of data from thousands or hundreds of thousands of edge devices to the cloud.

Nor is it necessary because many critical analyses do not require cloud-scale processing and

storage.

Increasing local efficiency: Collecting and securing data across a wide geographic area

with different environmental conditions may not be useful. The environmental conditions in

one area will trigger a local response independent from the conditions of another site

hundreds of miles away. Analyzing both areas in the same cloud system may not be

necessary for immediate efficiency.

.

The Traditional IT Cloud Computing Model

Internet of Things 18EC64

Page 20

IoT systems function differently. Several data-related problems need to be addressed:

Bandwidth in last-mile IoT networks is very limited. When dealing with thousands/millions

of devices, available bandwidth may be on order of tens of Kbps per device or even less.

Latency can be very high. Instead of dealing with latency in the milliseconds range, large
IoT networks often introduce latency of hundreds to thousands of milliseconds.

Network backhaul from the gateway can be unreliable and often depends on 3G/LTE or

even satellite links. Backhaul links can also be expensive if a per-byte data usage model is

necessary.

The volume of data transmitted over the backhaul can be high, and much of the data may
not really be that interesting (such as simple polling messages).

Big data is getting bigger. The concept of storing and analyzing all sensor data in the cloud

is impractical. The sheer volume of data generated makes real-time analysis and response to

the data almost impossible.

Fog Computing

The solution to the challenges mentioned in the previous section is to distribute data

management throughout the IoT system, as close to the edge of the IP network as possible.

The best-known embodiment of edge services in IoT is fog computing. Any device with

computing, storage, and network connectivity can be a fog node. Examples include industrial

controllers, switches, routers, embedded servers, and IoT gateways. Analyzing IoT data close

to where it is collected minimizes latency, offloads gigabytes of network traffic from the core

network, and keeps sensitive data inside the local network.

The IoT Data Management and Compute Stack with Fog Computing

Internet of Things 18EC64

Page 21

Note

Edge computing is also sometimes called ―mist‖ computing. If clouds exist in the sky,

and fog sits near the ground, then mist is what actually sits on the ground. Thus, the concept

of mist is to extend fog to the furthest point possible, right into the IoT endpoint device itself.

Fog services are typically accomplished very close to the edge device, sitting as close

to the IoT endpoints as possible. One significant advantage of this is that the fog node has

contextual awareness of the sensors it is managing because of its geographic proximity to

those sensors. For example, there might be a fog router on an oil derrick that is monitoring all

the sensor activity at that location. Because the fog node is able to analyze information from

all the sensors on that derrick, it can provide contextual analysis of the messages it is

receiving and may decide to send back only the relevant information over the backhaul

network to the cloud. In this way, it is performing distributed analytics such that the volume

of data sent upstream is greatly reduced and is much more useful to application and analytics

servers residing in the cloud.

Fog applications are as diverse as the Internet of Things itself. What they have in

common is data reduction—monitoring or analyzing real-time data from network-connected

things and then initiating an action, such as locking a door, changing equipment settings,

applying the brakes on a train, zooming a video camera, opening a valve in response to a

pressure reading, creating a bar chart, or sending an alert to a technician to make a preventive

repair.

The defining characteristic of fog computing are as follows:

Contextual location awareness and low latency: The fog node sits as close to the IoT
endpoint as possible to deliver distributed computing.

Geographic distribution: In sharp contrast to the more centralized cloud, the services and

applications targeted by the fog nodes demand widely distributed deployments.

Deployment near IoT endpoints: Fog nodes are typically deployed in the presence of a

large number of IoT endpoints. For example, typical metering deployments often see 3000 to
4000 nodes per gateway router, which also functions as the fog computing node.

Wireless communication between the fog and the IoT endpoint: Although it is possible

to connect wired nodes, the advantages of fog are greatest when dealing with a large number

of endpoints, and wireless access is the easiest way to achieve such scale.

Use for real-time interactions: Important fog applications involve real-time interactions

rather than batch processing. Preprocessing of data in the fog nodes allows upper-layer

applications to perform batch processing on a subset of the data.

Edge Computing

Fog computing solutions are being adopted by many industries, and efforts to develop

distributed applications and analytics tools are being introduced at an accelerating pace. The

natural place for a fog node is in the network device that sits closest to the IoT endpoints, and

these nodes are typically spread throughout an IoT network

The Hierarchy of Edge, Fog, and Cloud

It is important to stress that edge or fog computing in no way replaces the cloud.
Rather, they complement each other, and many use cases actually require strong cooperation

between layers. In the same way that lower courts do not replace the supreme court of a

Internet of Things 18EC64

Page 22

country, edge and fog computing layers simply act as a first line of defense for

filtering, analyzing, and otherwise managing data endpoints. This saves the cloud from being

queried by each and every node for each event.

Distributed Compute and Data Management Across an IoT System

From an architectural standpoint, fog nodes closest to the network edge receive the data from

IoT devices. The fog IoT application then directs different types of data to the optimal place

for analysis:

The most time-sensitive data is analyzed on the edge or fog node closest to the things

generating the data.

Data that can wait seconds or minutes for action is passed along to an aggregation node for

analysis and action.

Data that is less time sensitive is sent to the cloud for historical analysis, big data analytics,
and long-term storage. For example, each of thousands or hundreds of thousands of fog nodes

might send periodic summaries of data to the cloud for historical analysis and storage.

In summary, when architecting an IoT network, you should consider the amount of data to be

analyzed and the time sensitivity of this data. Understanding these factors will help you

decide whether cloud computing is enough or whether edge or fog computing would improve

your system efficiency. Fog computing accelerates awareness and response to events by

eliminating a round trip to the cloud for analysis. It avoids the need for costly bandwidth

additions by offloading gigabytes of network traffic from the core network. It also protects

sensitive IoT data by analyzing it inside company walls.

Internet of Things 18EC64

Page 23

MODULE-2

Internet of Things 18EC64

Page 24

SMART OBJECTS
Smart objects are any physical objects that contain embedded technology to sense and/or interact with

their environment in a meaningful way by being interconnected and enabling communication among

themselves or an external agent.

Some of the fundamental building blocks of IoT networks are

 Sensors

 Actuators

 Smart Objects

Sensors:

 A sensor does exactly as its name indicates: It senses.

 A sensor measures some physical quantity and converts that measurement reading into a

digital representation.

 That digital representation is typically passed to another device for transformation into useful

data that can be consumed by intelligent devices or humans.
 Sensors are not limited to human-like sensory data.

 They are able to provide an extremely wide spectrum of rich and diverse measurement data

with far greater precision than human senses.

 Sensors provide superhuman sensory capabilities.

 Sensors can be readily embedded in any physical objects that are easily connected to the

Internet by wired or wireless networks, they can interpret their environment and make

intelligent decisions.

Sensors have been grouped into different categories

 Active or passive: Sensors can be categorized based on whether they produce an energy output

and typically require an external power supply (active) or whether they simply receive energy and

typically require no external power supply (passive).

 Invasive or non-invasive: Sensors can be categorized based on whether a sensor is part of the

environment it is measuring (invasive) or external to it (non-invasive).

 Contact or no-contact: Sensors can be categorized based on whether they require physical
contact with what they are measuring (contact) or not (no-contact).

 Absolute or relative: Sensors can be categorized based on whether they measure on an absolute

scale (absolute) or based on a difference with a fixed or variable reference value (relative).

 Area of application: Sensors can be categorized based on the specific industry or vertical where
they are being used.

 How sensors measure: Sensors can be categorized based on the physical mechanism used to

measure sensory input (for example, thermoelectric, electrochemical, piezoresistive, optic,

electric, fluid mechanic, photoelastic).

 What sensors measure: Sensors can be categorized based on their applications or what physical

variables they measure.

The physical phenomenon a sensor is measuring is shown in Table-2.1

Internet of Things 18EC64

Page 25

 A fascinating use case to highlight the power of sensors and IoT is in the area of precision
agriculture (sometimes referred to as smart farming), which uses a variety of technical advances to

improve the efficiency, sustainability, and profitability of traditional farming practices.

 This includes the use of GPS and satellite aerial imagery for determining field viability; robots for

high-precision planting, harvesting, irrigation, and so on; and real-time analytics and artificial

intelligence to predict optimal crop yield, weather impacts, and soil quality.

Different types of sensors in a smart phone is shown in figure 2.1

Internet of Things 18EC64

Page 26

Figure 2.1: Sensors in a smart phone

Actuators:

 Actuators are natural complements to sensors.

 Figure 2.2 demonstrates the symmetry and complementary nature of these two types of

devices.

 Sensors are designed to sense and measure practically any measurable variable in the physical

world.

 They convert their measurements (typically analog) into electric signals or digital

representations that can be consumed by an intelligent agent (a device or a human).

 Actuators, on the others hand, receive some type of control signal (commonly an electric

signal or digital command) that triggers a physical effect, usually some type of motion, force,

and so on.

Figure 2.2 : How Sensors and Actuators Interact with the Physical World

Much like sensors, actuators also vary greatly in function, size, design, and so on. Some common

ways that they can be classified include the following:

 Type of motion: Actuators can be classified based on the type of motion they produce (for

example, linear, rotary, one/two/three-axes).

Internet of Things 18EC64

Page 27

 Power: Actuators can be classified based on their power output (for example, high power, low
power, micro power)

 Binary or continuous: Actuators can be classified based on the number of stable-state

outputs.

 Area of application: Actuators can be classified based on the specific industry or vertical

where they are used.

 Type of energy: Actuators can be classified based on their energy type.

Different types of Actuators are presented in Table -2.2

Table -

2.2: Actuator Classification by Energy Type

Micro-Electro-Mechanical Systems (MEMS)

 Micro-electro-mechanical systems (MEMS referred to as micro-machines, can integrate and
combine electric and mechanical elements, such as sensors and actuators, on a very small

(millimeter or less) scale.

 The combination of tiny size, low cost, and the ability to mass produce makes MEMS an

attractive option for a huge number of IoT applications.

Ex: Inkjet printers use micropump MEMS. Smart phones also use MEMS technologies for things like
accelerometers and gyroscopes

Smart Objects
Smart objects are, quite simply, the building blocks of IoT. They are what transform everyday objects

into a network of intelligent objects that are able to learn from and interact with their environment in a

meaningful way. A smart object, is a device that has, at a minimum, the following four defining

characteristics

 Processing Unit: A smart object has some type of processing unit for acquiring data,

processing and analyzing sensing information received by the sensor(s), coordinating control

signals to any actuators, and controlling a variety of functions on the smart object, including

the communication and power systems.

 Sensor(s) and /or actuator(s): A smart object is capable of interacting with the physical

world through sensors and actuators. A smart object does not need to contain both sensors and

actuators. In fact, a smart object can contain one or multiple sensors and/or actuators,

depending upon the application.

Internet of Things 18EC64

Page 28

 Communication Device: The communication unit is responsible for connecting a smart

object with other smart objects and the outside world (via the network). Communication

devices for smart objects can be either wired or wireless.

 Power Source: Smart objects have components that need to be powered. Interestingly, the

most significant power consumption usually comes from the communication unit of a smart

object.

Trends in Smart Objects:

The broad generalizations and trends impacting IoT are

 Size is decreasing: Some smart objects are so small they are not even visible to the naked

eye. This reduced size makes smart objects easier to embed in everyday objects.

 Power consumption is decreasing: The different hardware components of a smart object

continually consume less power. Some battery-powered sensors last 10 or more years without
battery replacement.

 Processing power is increasing: Processors are continually getting more powerful and
smaller.

 Communication capabilities are improving: It‘s no big surprise that wireless speeds are

continually increasing, but they are also increasing in range. IoT is driving the development of

more and more specialized communication protocols covering a greater diversity of use cases

and environments.

 Communication is being increasingly standardized: There is a strong push in the industry
to develop open standards for IoT communication protocols. In addition, there are more and

more open source efforts to advance IoT

Sensor Networks:

 A sensor/actuator network (SANET), as the name suggests, is a network of sensors that sense

and measure their environment and/or actuators that act on their environment.

 The sensors and/or actuators in a SANET are capable of communicating and cooperating in a
productive manner.

 SANETs offer highly coordinated sensing and actuation capabilities.

 Smart homes are a type of SANET that display this coordination between distributed sensors
and actuators.

 For example, smart homes can have temperature sensors that are strategically networked with

heating, ventilation, and air-conditioning (HVAC) actuators. When a sensor detects a specified

temperature, this can trigger an actuator to take action and heat or cool the home as needed.

The following are some advantages and disadvantages that a wireless-based solution offers:

Advantages:

 Greater deployment flexibility (especially in extreme environments or hard-to-reach places)

 Simpler scaling to a large number of nodes

 Lower implementation costs

 Easier long-term maintenance

 Effortless introduction of new sensor/actuator nodes

 Better equipped to handle dynamic/rapid topology changes

Disadvantages:

 Potentially less secure (for example, hijacked access points)

 Typically, lower transmission speeds

 Greater level of impact/influence by environment

Internet of Things 18EC64

Page 29

Wireless Sensor Networks (WSNs)

Wireless sensor networks are made up of wirelessly connected smart objects, which are sometimes

referred to as motes. The following are some of the most significant limitations of the smart objects in

WSNs:

 Limited processing power

 Limited memory

 Lossy communication

 Limited transmission speeds

 Limited power

These limitations greatly influence how WSNs are designed, deployed, and utilized. Figure 2.3 below

shows an example of such a data aggregation function in a WSN where temperature readings from a

logical grouping of temperature sensors are aggregated as an average temperature reading.

Figure 2.3 Data Aggregation in Wireless Sensor Networks

These data aggregation techniques are helpful in reducing the amount of overall traffic (and energy)

in WSNs with very large numbers of deployed smart objects. Wirelessly connected smart objects

generally have one of the following two communication patterns:

 Event-driven: Transmission of sensory information is triggered only when a smart object
detects a particular event or predetermined threshold.

 Periodic: Transmission of sensory information occurs only at periodic intervals.

Communication Protocols for Wireless Sensor Networks:

 Any communication protocol must be able to scale to a large number of nodes.

 Likewise, when selecting a communication protocol, you must carefully take into account the

requirements of the specific application.

 Also consider any trade-offs the communication protocol offers between power consumption,

maximum transmission speed, range, tolerance for packet loss, topology optimization,

security, and so on.

 Sensors often produce large amounts of sensing and measurement data that needs to be
processed.

Internet of Things 18EC64

Page 30

 This data can be processed locally by the nodes of a WSN or across zero or more hierarchical
levels in IoT networks.

 IoT is one of those rare technologies that impacts all verticals and industries, which means

standardization of communication protocols is a complicated task, requiring protocol

definition across multiple layers of the stack, as well as a great deal of coordination across

multiple standards development organizations.

Connecting smart objects

The characteristics and attributes considered when selecting and dealing with connecting smart

objects are

1) Range: It defines how far does the signal need to be propagated? That is, what will be the area of

coverage for a selected wireless technology? The below figure 2.4 shows the range considered

Figure 2.4 Wireless Access Landscape

 Short Range:

o The classical wired example is a serial cable.
o Wireless short-range technologies are often considered as an alternative to a serial

cable, supporting tens of meters of maximum distance between two devices.

o Examples of short-range wireless technologies are IEEE 802.15.1 Bluetooth and IEEE
802.15.7 Visible Light Communications (VLC).

o These short-range communication methods are found in only a minority of IoT
installations.

 Medium Range:

o In the range of tens to hundreds of meters, many specifications and implementations
are available.

o The maximum distance is generally less than 1 mile between two devices.
o Examples of medium-range wireless technologies include IEEE 802.11 Wi-Fi, IEEE

802.15.4, and 802.15.4g WPAN.

o Wired technologies such as IEEE 802.3 Ethernet and IEEE 1901.2
o Narrowband Power Line Communications (PLC) may also be classified as medium

range, depending on their physical media characteristics.

Internet of Things 18EC64

Page 31

 Long Range:

o Distances greater than 1 mile between two devices require long-range technologies.
Wireless examples are cellular (2G, 3G, 4G) and some applications of outdoor IEEE

802.11 Wi-Fi and Low-Power Wide-Area (LPWA) technologies.

o LPWA communications have the ability to communicate over a large area without
consuming much power.

o These technologies are therefore ideal for battery-powered IoT sensors.
o Found mainly in industrial networks, IEEE 802.3 over optical fiber and IEEE 1901

Broadband Power Line Communications are classified as long range but are not really
considered IoT access technologies.

2) Frequency Bands:

 Radio spectrum is regulated by countries and/or organizations, such as the International

Telecommunication Union (ITU) and the Federal Communications Commission (FCC).

 These groups define the regulations and transmission requirements for various frequency

bands.

 For example, portions of the spectrum are allocated to types of telecommunications such as

radio, television, military, and so on.

 Focusing on IoT access technologies, the frequency bands leveraged by wireless
communications are split between licensed and unlicensed bands.

 Licensed spectrum is generally applicable to IoT long-range access technologies and allocated

to communications infrastructures deployed by services providers, public services (for
example, first responders, military), broadcasters, and utilities.

 The ITU has also defined unlicensed spectrum for the industrial, scientific, and medical (ISM)
portions of the radio bands.

 These frequencies are used in many communications technologies for short-range devices

(SRDs).

 Unlicensed means that no guarantees or protections are offered in the ISM bands for device

communications.

 For IoT access, these are the most well-known ISM bands:

 2.4 GHz band as used by IEEE 802.11b/g/n Wi-Fi

 IEEE 802.15.1 Bluetooth

 IEEE 802.15.4 WPAN

 Unlicensed spectrum is usually simpler to deploy than licensed because it does not require a
service provider.

 Some communications within the ISM bands operate in the sub-GHz range.

 Sub-GHz bands are used by protocols such as IEEE 802.15.4, 802.15.4g, and 802.11ah, and
LPWA technologies such as LoRa and Sigfox.

 The most well-known ranges are centered on 169 MHz, 433 MHz, 868 MHz, and 915 MHz.

 The 868 MHz band is applicable to IoT access technologies such as IEEE 802.15.4 and
802.15.4g, 802.11ah, and LoRaWAN.

Power Consumption:

 Battery-powered nodes bring much more flexibility to IoT devices.

 These nodes are often classified by the required lifetimes of their batteries.

 A powered node has a direct connection to a power source, and communications are usually
not limited by power consumption criteria.

 IoT wireless access technologies must address the needs of low power consumption and

connectivity for battery-powered nodes.

Internet of Things 18EC64

Page 32

 This has led to the evolution of a new wireless environment known as Low-Power Wide-Area
(LPWA).

Topology

 Among the access technologies available for connecting IoT devices, three main topology

schemes are dominant: star, mesh, and peer-to-peer.

 For long-range and short-range technologies, a star topology is prevalent, as seen with
cellular, LPWA, and Bluetooth networks.

 Star topologies utilize a single central base station or controller to allow communications with
endpoints.

 For medium-range technologies, a star, peer-to-peer, or mesh topology is common.

 Peer-to-peer topologies allow any device to communicate with any other device as long as

they are in range of each other.

 Peer-to-peer topologies enable more complex formations, such as a mesh networking

topology.

The figure 2.5 below represents the various topology.

Figure 2.5 Star, Peer-to-Peer, and Mesh Topologies

 The disadvantage of sub-GHz frequency bands is their lower rate of data delivery compared to
higher frequencies.

 Example: Indoor Wi-Fi deployments are mostly a set of nodes forming a star topology around

their access points (APs).

 Outdoor Wi-Fi may consist of a mesh topology for the backbone of APs, with nodes

connecting to the APs in a star topology.

 IEEE 802.15.4 and 802.15.4g and even wired IEEE 1901.2a PLC are generally deployed as a

mesh topology.

 Mesh topology requires the implementation of a Layer 2 forwarding protocol known as mesh-

 under or a Layer 3 forwarding protocol referred to as mesh-over on each intermediate node.

Internet of Things 18EC64

Page 33

Constrained Devices:

Constrained nodes have limited resources that impact their networking feature set and capabilities.

Constrained nodes can broken down into different classes such as shown in Table 2.3:

Table 2.3 Classes of Constrained Nodes, as Defined by RFC 7228

 Constrained-node networks are often referred to as low-power and lossy networks (LLNs).

 Lossy networks indicates that network performance may suffer from interference and
variability due to harsh radio environments.

 Layer-1 and Layer-2 protocols that can be used for constrained-node networks must be

evaluated in the context of the following characteristics for use-case applicability: data rate

and throughput, latency and determinism, and overhead and payload.

 The IoT access technologies developed for constrained nodes are optimized for low power

consumption, but they are also limited in terms of data rate, which depends on the selected

frequency band, and throughput.

 The data rates available from IoT access technologies range from 100 bps with protocols such
as Sigfox to tens of megabits per second with technologies such as LTE and IEEE 802.11ac.

 Short-range technologies can also provide medium to high data rates that have enough
throughput to connect a few endpoints.

 On constrained networks, latency may range from a few milliseconds to seconds, and

applications and protocol stacks must cope with these wide-ranging values.

 For example, UDP at the transport layer is strongly recommended for IP endpoints

communicating over LLNs

 When considering constrained access network technologies, it is important to review the MAC

payload size characteristics required by applications.

 In addition, you should be aware of any requirements for IP.

Internet of Things 18EC64

Page 34

 The minimum IPv6 MTU size is expected to be 1280 bytes. Therefore, the fragmentation of
the IPv6 payload has to be considered by link layer access protocols with smaller MTUs.

 Example: The payload size for IEEE 802.15.4 is 127 bytes and requires an IPv6 payload with

a minimum MTU of 1280 bytes to be fragmented.

 On the other hand, IEEE 802.15.4g enables payloads up to 2048 bytes, easing the support of

the IPv6 minimum MTU of 1280 bytes.

IoT Access Technologies

 IEEE 802.15.4:

 IEEE 802.15.4 is a wireless access technology for low-cost and low-data-rate devices

that are powered or run on batteries.

 This access technology enables easy installation using a compact protocol stack while

remaining both simple and flexible.

 IEEE 802.15.4 is commonly found in the following types of deployments:

o Home and building automation

o Automotive networks

o Industrial wireless sensor networks

o Interactive toys and remote controls

 Criticisms of IEEE 802.15.4 often focus on its MAC reliability, unbounded latency,

and susceptibility to interference and multipath fading.

 Interference and multipath fading occur with IEEE 802.15.4 because it lacks a
frequency-hopping technique.

 Standardization and Alliances

 IEEE 802.15.4 or IEEE 802.15 Task Group 4 defines low-data-rate PHY and MAC

layer specifications for wireless personal area networks (WPAN).

 The IEEE 802.15.4 PHY and MAC layers are the foundations for several networking

protocol stacks.

 These protocol stacks make use of 802.15.4 at the physical and link layer levels, but

the upper layers are different.

Some of the most well-known protocol stacks based on 802.15.4 are as shown in Table 2.4

Internet of Things 18EC64

Page 35

 ZigBee:

 Protocol Stacks Utilizing IEEE 802.15.4

Table

 It is an IoT solution for interconnecting smart objects.

 ZigBee solutions are aimed at smart objects and sensors that have low bandwidth and low

power needs.

 The Zigbee specification has undergone several revisions.

 In the 2006 revision, sets of commands and message types were introduced, and increased in
number in the 2007 (called Zigbee pro) iteration, to achieve different functions for a device,

such as metering, temperature, or lighting control.

 These sets of commands and message types are called clusters.

 Ultimately, these clusters from different functional domains or libraries form the building
blocks of Zigbee application profiles.

 Vendors implementing pre-defined Zigbee application profiles like Home Automation or
Smart Energy can ensure interoperability between their products.

 The main areas where ZigBee is the most well-known include automation for commercial,

retail, and home applications and smart energy.

 In the industrial and commercial automation space, ZigBee-based devices can handle various

functions, from measuring temperature and humidity to tracking assets.

 For home automation, ZigBee can control lighting, thermostats, and security functions.

 ZigBee Smart Energy brings together a variety of interoperable products, such as smart

meters, that can monitor and control the use and delivery of utilities, such as electricity and

water.

 The traditional ZigBee stack is illustrated in the below figure 2.6.

Internet of Things 18EC64

Page 36

Figure 2.6 High-Level ZigBee Protocol Stack

 The ZigBee network and security layer provides mechanisms for network startup,

configuration, routing, and securing communications. This includes calculating routing paths

in what is often a changing topology, discovering neighbors, and managing the routing tables

as devices join for the first time. The network layer is also responsible for forming the

appropriate topology, which is often a mesh but could be a star or tree as well. From a security

perspective, ZigBee utilizes 802.15.4 for security at the MAC layer, using the Advanced

Encryption Standard (AES) with a 128-bit key and also provides security at the network and

application layers.

 ZigBee is one of the most well-known protocols built on an IEEE 802.15.4 foundation. On top

of the 802.15.4 PHY and MAC layers, ZigBee specifies its own network and security layer

and application profiles.

 ZigBee IP

 ZigBee IP was created to embrace the open standards coming from the IETF‘s work on LLNs,

such as IPv6, 6LoWPAN, and RPL They provide for low-bandwidth, low-power, and cost-

effective communications when connecting smart objects.

 ZigBee IP is a critical part of the Smart Energy (SE) Profile 2.0 specification from the ZigBee

Alliance. SE 2.0 is aimed at smart metering and residential energy management systems. Any

other applications that need a standards-based IoT stack can utilize Zigbee IP. The ZigBee IP

stack is shown in below figure 2.7.

Figure 2.7 ZigBee IP Protocol Stack

 ZigBee IP supports 6LoWPAN as an adaptation layer.

 ZigBee IP requires the support of 6LoWPAN‘s fragmentation and header compression

schemes

 At the network layer, all ZigBee IP nodes support IPv6, ICMPv6, and 6LoWPAN Neighbor
Discovery (ND), and utilize RPL for the routing of packets across the mesh network.

 802.15.4 Physical and MAC Layer:

 The 802.15.4 standard supports an extensive number of PHY options that range from 2.4

GHz to sub-GHz frequencies in ISM bands.

 The original IEEE 802.15.4-2003 standard specified only three PHY options based on direct

sequence spread spectrum (DSSS) modulation.

Internet of Things 18EC64

Page 37

 DSSS is a modulation technique in which a signal is intentionally spread in the frequency
domain, resulting in greater bandwidth.

 The original physical layer transmission options were as follows:

o 2.4 GHz, 16 channels, with a data rate of 250 kbps

o 915 MHz, 10 channels, with a data rate of 40 kbps

o 868 MHz, 1 channel, with a data rate of 20 kbps

 IEEE 802.15.4-2006, 802.15.4-2011, and IEEE 802.15.4-2015 introduced additional PHY

communication options, including the following:
o OQPSK PHY: This is DSSS PHY, employing offset quadrature phase-shift keying

(OQPSK) modulation.

 OQPSK is a modulation technique that uses four unique bit values that are

signaled by phase changes.

 An offset function that is present during phase shifts allows data to be

transmitted more reliably.

o BPSK PHY: This is DSSS PHY, employing binary phase-shift keying (BPSK)
modulation.

 BPSK specifies two unique phase shifts as its data encoding scheme.

o ASK PHY: This is parallel sequence spread spectrum (PSSS) PHY, employing
amplitude shift keying (ASK) and BPSK modulation.

 PSSS is an advanced encoding scheme that offers increased range, throughput,

data rates, and signal integrity compared to DSSS.

 ASK uses amplitude shifts instead of phase shifts to signal different bit values.

Figure 2.8 IEEE 802.15.4 PHY Format

 The PHY Header portion of the PHY frame is shown in Figure 2.8 is simply a frame length

value.

 It lets the receiver know how much total data to expect in the PHY service data unit (PSDU)
portion of the 802.4.15 PHY. The PSDU is the data field or payload.

 The IEEE 802.15.4 MAC layer manages access to the PHY channel by defining how devices in
the same area will share the frequencies allocated.

 At this layer, the scheduling and routing of data frames are also coordinated.

 The 802.15.4 MAC layer performs the following tasks:

o Network beaconing for devices acting as coordinators (New devices use beacons to join an
802.15.4 network)

o PAN association and disassociation by a device

o Device security

o Reliable link communications between two peer MAC entities
o The MAC layer achieves these tasks by using various predefined frame types. In fact, four

types of MAC frames are specified in 802.15.4:

Internet of Things 18EC64

Page 38

o Data frame: Handles all transfers of data

o Beacon frame: Used in the transmission of beacons from a PAN coordinator

o Acknowledgement frame: Confirms the successful reception of a frame

o MAC command frame: Responsible for control communication between devices

 Each of these four 802.15.4 MAC frame types follows the frame format shown in Figure 2.9.

In Figure 2.9, notice that the MAC frame is carried as the PHY payload.

 The 802.15.4 MAC frame can be broken down into the MAC Header, MAC Payload, and MAC
Footer fields.

Figure 2.9 IEEE 802.15.4 MAC Format

 The MAC Header field is composed of the Frame Control, Sequence Number and the Addressing

fields.

 The Frame Control field defines attributes such as frame type, addressing modes, and other

control flags.

 The Sequence Number field indicates the sequence identifier for the frame.

 The Addressing field specifies the Source and Destination PAN Identifier fields as well as the
Source and Destination Address fields.

 The MAC Payload field varies by individual frame type.

 The MAC Footer field is nothing more than a frame check sequence (FCS).

 An FCS is a calculation based on the data in the frame that is used by the receiving side to
confirm the integrity of the data in the frame.

 Topology

 IEEE 802.15.4–based networks can be built as star, peer-to-peer, or mesh topologies.

 Mesh networks tie together many nodes.

 This allows nodes that would be out of range if trying to communicate directly to leverage

intermediary nodes to transfer communications.

 Every 802.15.4 PAN should be set up with a unique ID.

 All the nodes in the same 802.15.4 network should use the same PAN ID.

 Figure 2.10 shows an example of an 802.15.4 mesh network with a PAN ID of 1.

https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch04.html#ch04fig06
https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch04.html#ch04fig06
https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch04.html#ch04fig07

Internet of Things 18EC64

 Page 39

Figure 2.10: 802.15.4 Sample Mesh Network Topology

 FFD (full-function devices) acts as a PAN coordinator to deliver services that allow other

devices to associate and form a cell or PAN.

 FFD devices can communicate with any other devices, whereas RFD devices can

communicate only with FFD devices.

 Security

 The IEEE 802.15.4 specification uses Advanced Encryption Standard (AES) with a 128-bit

key length as the base encryption algorithm for securing its data.

 In addition to encrypting the data, AES in 802.15.4 also validates the data that is sent.

 This is accomplished by a message integrity code (MIC), which is calculated for the entire

frame using the same AES key that is used for encryption.

 The figure 2.11 below shows the IEEE 802.15.4 frame format at a high level, with the

Security Enabled bit set and the Auxiliary Security Header field present.

 Figure 2.11:Frame Format with the Auxiliary Security Header Field for 802.15.4-2006 and Later Versions

Internet of Things 18EC64

Page 40

 IEEE 802.15.4g and 802.15.4e

 IEEE 802.15.4g-2012 is also an amendment to the IEEE 802.15.4-2011 standard, and just like

802.15.4e-2012, it has been fully integrated into the core IEEE 802.15.4-2015 specification.

 802.15.4g seeks to optimize large outdoor wireless mesh networks for field area networks
(FANs)

 This technology applies to IoT use cases such as the following:
o Distribution automation and industrial supervisory control and data acquisition

(SCADA) environments for remote monitoring and control

o Public lighting

o Environmental wireless sensors in smart cities

o Electrical vehicle charging stations

o Smart parking meters

o Microgrids

o Renewable energy.

 Standardization and Alliances:

 802.15.4g-2012 and 802.15.4e-2012 are simply amendments to IEEE 802.15.4-2011.
 Same IEEE 802.15 Task Group 4 standards body authors, maintains, and integrates them

into the next release of the core specification.

 To guarantee interoperability, the Wi-SUN Alliance was formed.

 It defines communication profiles for smart utility and related networks.
 These profiles are based on open standards, such as 802.15.4g-2012, 802.15.4e-2012,

IPv6, 6LoWPAN, and UDP for the FAN profile.

 The Wi-SUN Alliance performs the same function as the Wi-Fi Alliance and WiMAX
Forum

 Physical Layer:

 In IEEE 802.15.4g-2012, the original IEEE 802.15.4 maximum PSDU or payload size of 127

bytes was increased for the SUN PHY to 2047 bytes.

 This provides a better match for the greater packet sizes found in many upper-layer protocols.

 For example, the default IPv6 MTU setting is 1280 bytes. Fragmentation is no longer

necessary at Layer 2 when IPv6 packets are transmitted over IEEE 802.15.4g MAC frames.

Also, the error protection was improved in IEEE 802.15.4g by evolving the CRC from 16 to

32 bits.

 The SUN PHY, as described in IEEE 802.15.4g-2012, supports multiple data rates in bands

ranging from 169 MHz to 2.4 GHz.\

 Within these bands, data must be modulated onto the frequency using at least one of the

following PHY mechanisms to be IEEE 802.15.4g compliant:

o Multi-Rate and Multi-Regional Frequency Shift Keying (MR-FSK): Offers good
transmit power efficiency due to the constant envelope of the transmit signal

o Multi-Rate and Multi-Regional Orthogonal Frequency Division Multiplexing
(MR-OFDM): Provides higher data rates but may be too complex for low-cost and
low-power devices

o Multi-Rate and Multi-Regional Offset Quadrature Phase-Shift Keying (MR-O-
QPSK):Shares the same characteristics of the IEEE 802.15.4-2006 O-QPSK PHY,
making multi-mode systems more cost-effective and easier to design.

Internet of Things 18EC64

Page 41

 MAC Layer:

The following are some of the main enhancements to the MAC layer proposed by IEEE 802.15.4e-

2012:

 Time-Slotted Channel Hopping (TSCH):

 TSCH is an IEEE 802.15.4e-2012 MAC operation mode that works to guarantee media

access and channel diversity.

 Channel hopping, also known as frequency hopping, utilizes different channels for

transmission at different times.

 TSCH divides time into fixed time periods, or ―time slots,‖ which offer guaranteed

bandwidth and predictable latency.

 In a time, slot, one packet and its acknowledgement can be transmitted, increasing

network capacity because multiple nodes can communicate in the same time slot, using

different channels.

 A number of time slots are defined as a ―slot frame,‖ which is regularly repeated to

provide ―guaranteed access.‖

 The transmitter and receiver agree on the channels and the timing for switching

between channels through the combination of a global time slot counter and a global

channel hopping sequence list, as computed on each node to determine the channel of

each time slot.

 TSCH adds robustness in noisy environments and smoother coexistence with other

wireless technologies, especially for industrial use cases.

 Information elements:

 Information elements (IEs) allow for the exchange of information at the MAC layer in

an extensible manner, either as header IEs (standardized) and/or payload IEs (private).

 Specified in a tag, length, value (TLV) format, the IE field allows frames to carry

additional metadata to support MAC layer services.

 These services may include IEEE 802.15.9 key management, Wi-SUN 1.0 IEs to

broadcast and unicast schedule timing information, and frequency hopping

synchronization information for the 6TiSCH architecture.

 Enhanced beacons (EBs):

 EBs extend the flexibility of IEEE 802.15.4 beacons to allow the construction of

application-specific beacon content.

 This is accomplished by including relevant IEs in EB frames.
 Some IEs that may be found in EBs include network metrics, frequency hopping

broadcast schedule, and PAN information version.

 Enhanced beacon requests (EBRs):

 Like enhanced beacons, an enhanced beacon request (EBRs) also leverages IEs.
 The IEs in EBRs allow the sender to selectively specify the request of information.

Beacon responses are then limited to what was requested in the EBR.

 For example, a device can query for a PAN that is allowing new devices to join or a

PAN that supports a certain set of MAC/PHY capabilities.

 Enhanced Acknowledgement:

 The Enhanced Acknowledgement frame allows for the integration of a frame counter

for the frame being acknowledged.

 This feature helps protect against certain attacks that occur when Acknowledgement

frames are spoofed.

 The 802.15.4e-2012 MAC amendment is quite often paired with the 802.15.4g-2012 PHY.
Figure 2.11 details this format

Internet of Things 18EC64

Page 42

Figure 2.11: IEEE 802.15.4g/e MAC Frame Format

 Topology:

 Deployments of IEEE 802.15.4g-2012 are mostly based on a mesh topology.
 A mesh topology allows deployments to be done in urban or rural areas, expanding the

distance between nodes that can relay the traffic of other nodes.

 Support for battery-powered nodes with a long lifecycle requires optimized Layer 2

forwarding or Layer 3 routing protocol implementations.

 This provides an extra level of complexity but is necessary in order to cope with sleeping

battery-powered nodes.

 Security:

 Both IEEE 802.15.4g and 802.15.4e inherit their security attributes from the IEEE 802.15.4-

2006 specification.

 Therefore, encryption is provided by AES, with a 128-bit key.

 In addition to the Auxiliary Security Header field initially defined in 802.15.4-2006, a secure

acknowledgement and a secure Enhanced Beacon field complete the MAC layer security.

 Figure 2.12 shows a high-level overview of the security associated with an IEEE 802.15.4e

MAC frame.

Figure 2.12: IEEE 802.15.4g/e MAC Layer Security

 The MIC is a unique value that is calculated based on the frame contents.

 The Security Header field denoted in Figure 2.12 is composed of the Auxiliary Security field

and one or more Information Elements fields.

https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch04.html#ch04fig10

Internet of Things 18EC64

Page 43

 Integration of the Information Elements fields allows for the adoption of additional security

capabilities, such as the IEEE 802.15.9 Key Management Protocol (KMP) specification.

 KMP provides a means for establishing keys for robust datagram security. Without key

management support, weak keys are often the result, leaving the security system open to

attack.

 IEEE 1901.2a

 IEEE 1901.2a-2013 is a wired technology that is an update to the original IEEE 1901.2

specification

 This is a standard for Narrowband Power Line Communication (NB-PLC).

 NB-PLC leverages a narrowband spectrum for low power, long range, and resistance to

interference over the same wires that carry electric power.

 NB-PLC is often found in use cases such as the following:

 Smart metering: NB-PLC can be used to automate the reading of utility meters, such as

electric, gas, and water meters. This is true particularly in Europe, where PLC is the preferred

technology for utilities deploying smart meter solutions.

 Distribution automation: NB-PLC can be used for distribution automation, which involves
monitoring and controlling all the devices in the power grid.

 Public lighting: A common use for NB-PLC is with public lighting—the lights found in cities
and along streets, highways, and public areas such as parks.

 Electric vehicle charging stations: NB-PLC can be used for electric vehicle charging stations,

where the batteries of electric vehicles can be recharged.

 Microgrids: NB-PLC can be used for microgrids, local energy grids that can disconnect from
the traditional grid and operate independently.

 Renewable energy: NB-PLC can be used in renewable energy applications, such as solar,
wind power, hydroelectric, and geothermal heat.

 Standardization and Alliances

 The IEEE 1901.2 working group published the IEEE 1901.2a specification in

November 2013.

 IEEE 1901.2 working group only looked at standardizing the NB-PLC PHY and MAC

layers independently of the upper layers.

 Using the 802.15.4e Information Element fields eases support for IEEE 802.15.9 key

management.

 The HomePlug Alliance was one of the main industry organizations that drove the

promotion and certification of PLC technologies, with IEEE 1901.2a being part of its
HomePlug Netricity program.

 Physical Layer

 NB-PLC is defined for frequency bands from 3 to 500 kHz.
 Figure 2.13 shows the various frequency bands for NB-PLC. The most well-known

bands are regulated by CENELEC (Comité Européen de Normalisation Électro

technique) and the FCC (Federal Communications Commission).

 The two ARIB frequency bands are ARIB 1, 37.5–117.1875 kHz, and ARIB 2,

154.6875–403.125 kHz.

Internet of Things 18EC64

Page 44

Figure 2.13 NB-PLC Frequency Bands

 With IEEE 1901.2a, the data throughput rate has the ability to dynamically change,

depending on the modulation type and tone map.

 One major difference between IEEE 802.15.4g/e and IEEE 1901.2a is the full

integration of different types of modulation and tone maps by a single PHY layer in

the IEEE 1901.2a specification.

 IEEE 802.15.4g/e doesn‘t really define a multi-PHY management algorithm.
 The PHY payload size can change dynamically, based on channel conditions in IEEE

1901.2a.

 Therefore, MAC sublayer segmentation is implemented. If the size of the MAC

payload is too large to fit within one PHY service data unit (PSDU), the MAC payload

is partitioned into smaller segments.

 MAC payload segmentation is done by dividing the MAC payload into multiple

smaller amounts of data (segments), based on PSDU size.

 The segmentation may require the addition of padding bytes to the last payload

segment so that the final MPDU fills the PSDU.

 MAC Layer:

 The MAC frame format of IEEE 1901.2a is based on the IEEE 802.15.4 MAC frame

but integrates the latest IEEE 802.15.4e-2012 amendment, which enables key features

to be supported.

 One of the key components brought from 802.15.4e to IEEE 1901.2a is information
elements.

 Figure 2.14 provides a overview of the general MAC frame format for IEEE 1901.2.

Figure 2.14: General MAC Frame Format for IEEE 1901.2

 IEEE 1901.2 has a Segment Control field.

 This field handles the segmentation or fragmentation of upper-layer packets with sizes

larger than what can be carried in the MAC protocol data unit (MPDU).

 Topology:

 Use cases and deployment topologies for IEEE 1901.2a are tied to the physical power

lines.

Internet of Things 18EC64

Page 45

 As with wireless technologies, signal propagation is limited by factors such as noise,

interference, distortion, and attenuation.

 These factors become more prevalent with distance, so most NB-PLC deployments use

some sort of mesh topology.

 Mesh networks offer the advantage of devices relaying the traffic of other devices so

longer distances can be segmented.

 Security:

 IEEE 1901.2a security offers similar features to IEEE 802.15.4g. Encryption and

authentication are performed using AES. I

 In addition, IEEE 1901.2a aligns with 802.15.4g in its ability to support the IEEE

802.15.9 Key Management Protocol.

 The Security Enabled bit in the Frame Control field should be set in all MAC frames

carrying segments of an encrypted frame.

 If data encryption is required, it should be done before packet segmentation. During

packet encryption, the Segment Control field should not be included in the input to the

encryption algorithm.

 On the receiver side, the data decryption is done after packet reassembly.
 When security is enabled, the MAC payload is composed of the ciphered payload and

the message integrity code (MIC) authentication tag for non-segmented payloads.

 If the payload is segmented, the MIC is part of the last packet (segment) only.
 The MIC authentication is computed using only information from the MHR of the

frame carrying the first segment.

 Competitive Technologies:

 G3-PLC (now ITU G.9903)

 PRIME (now ITU G.9904).

Both of these technologies were initially developed to address a single use case: smart

metering deployment in Europe over the CENELEC A band.

 IEEE 802.11ah

 In unconstrained networks, IEEE 802.11 Wi-Fi is certainly the most successfully deployed

wireless technology.

 Wi-Fi lacks sub-GHz support for better signal penetration, low power for battery-powered

nodes, and the ability to support a large number of devices.

 Hence the IEEE 802.11 working group launched a task group named IEEE 802.11ah to
specify a sub-GHz version of Wi-Fi.

Three main use cases are identified for IEEE 802.11ah:

 Sensors and meters covering a smart grid: Meter to pole, environmental/agricultural

monitoring, industrial process sensors, indoor healthcare system and fitness sensors, home

and building automation sensors.

 Backhaul aggregation of industrial sensors and meter data: Potentially connecting
IEEE 802.15.4g subnetworks

 Extended range Wi-Fi: For outdoor extended-range hotspot or cellular traffic offloading

when distances already covered by IEEE 802.11a/b/g/n/ac are not good enough.

Internet of Things 18EC64

Page 46

 Standardization and Alliances

 In July 2010, the IEEE 802.11 working group decided to work on an ―industrial Wi-Fi‖

and created the IEEE 802.11ah group.

 The 802.11ah specification would operate in unlicensed sub-GHz frequency bands, similar

to IEEE 802.15.4 and other LPWA technologies.

 For the 802.11ah standard, the Wi-Fi Alliance defined a new brand called Wi-Fi HaLow.

 It is similar to the word ―hello‖ but it is pronounced ―hay-low.‖

 Physical Layer

 IEEE 802.11ah essentially provides an additional 802.11 physical layer operating in
unlicensed sub-GHz bands.

 Various countries and regions use the following bands for IEEE 802.11ah: 868–868.6

MHz for EMEAR, 902–928 MHz and associated subsets for North America and Asia-

Pacific regions, and 314–316 MHz, 430–434 MHz, 470–510 MHz, and 779–787 MHz for

China.

 Based on OFDM modulation, IEEE 802.11ah uses channels of 2, 4, 8, or 16 MHz.

 Ex: At a data rate of 100 kbps, the outdoor transmission range for IEEE 802.11ah is
expected to be 0.62 mile.

 MAC Layer

 The IEEE 802.11ah MAC layer is optimized to support the new sub-GHz Wi-Fi PHY while

providing low power consumption and the ability to support a larger number of endpoints.

 Enhancements and features specified by IEEE 802.11ah for the MAC layer include the

following:

o Number of devices: Has been scaled up to 8192 per access point.

o MAC header: Has been shortened to allow more efficient communication.

o Null data packet (NDP) support:
 Is extended to cover several control and management frames.

 Relevant information is concentrated in the PHY header and the additional

overhead associated with decoding the MAC header and data payload is

avoided.

o Grouping and sectorization:

 Enables an AP to use sector antennas and also group stations (distributing a
group ID).

 In combination with RAW and TWT, this mechanism reduces contention in

large cells with many clients by restricting which group, in which sector, can

contend during which time window.

o Restricted access window (RAW):

 Is a control algorithm that avoids simultaneous transmissions when many
devices are present and provides fair access to the wireless network.

 By providing more efficient access to the medium, additional power savings for

battery-powered devices can be achieved, and collisions are reduced.

o Target wake time (TWT):

 Reduces energy consumption by permitting an access point to define times
when a device can access the network.

 This allows devices to enter a low-power state until their TWT time arrives.

Internet of Things 18EC64

Page 47

 It also reduces the probability of collisions in large cells with many clients.
o Speed frame exchange:

 Enables an AP and endpoint to exchange frames during a reserved transmit

opportunity (TXOP).

 This reduces contention on the medium, minimizes the number of frame

exchanges to improve channel efficiency, and extends battery life by keeping

awake times short.

 Topology

 While IEEE 802.11ah is deployed as a star topology, it includes a simple hops relay

operation to extend its range.

 This relay operation can be combined with a higher transmission rate or modulation and

coding scheme (MCS).

 This means that a higher transmit rate is used by relay devices talking directly to the

access point.

 The transmit rate reduces as you move further from the access point via relay clients.

 Sectorization is a technique that involves partitioning the coverage area into several
sectors to get reduced contention within a certain sector.

 This technique is useful for limiting collisions in cells that have many clients.

 This technique is also often necessary when the coverage area of 802.11ah access points is

large, and interference from neighbouring access points is problematic.

 Figure 2.15 shows an example of 802.11ah sectorization.

Figure 2.15 :IEEE 802.11ah Sectorization

 Security

 Similar to IEEE 802.11 specifications

 Competitive Technologies

 Competitive technologies to IEEE 802.11ah are IEEE 802.15.4 and IEEE

802.15.4e

 LoRaWAN:

 It is an unlicensed-band LPWA(Low-Power Wide-Area) technology.

Internet of Things 18EC64

Page 48

 Standardization and Alliances

 Optimized for long-range, two-way communications and low power consumption, the
technology evolved from Layer 1 to a broader scope through the creation of the LoRa

Alliance.

 The LoRa Alliance quickly achieved industry support and currently has hundreds of members.

 LoRa Alliance uses the term LoRaWAN to refer to its architecture and its specifications that
describe end-to-end LoRaWAN communications and protocols.

 Figure 2.16 provides a high-level overview of the LoRaWAN layers.

Figure 2.16 LoRaWAN Layers

 Physical Layer

 LoRaWAN 1.0.2 regional specifications describe the use of the main unlicensed sub-GHz

frequency bands of 433 MHz, 779–787 MHz, 863–870 MHz, and 902–928 MHz, as well as

regional profiles for a subset of the 902–928 MHz bandwidth.

 For example, Australia utilizes 915–928 MHz frequency bands, while South Korea uses 920–

923 MHz and Japan uses 920–928 MHz.

 A LoRa gateway is deployed as the center hub of a star network architecture.

 It uses multiple transceivers and channels and can demodulate multiple channels at once or

even demodulate multiple signals on the same channel simultaneously.

 LoRa gateways serve as a transparent bridge relaying data between endpoints, and the

endpoints use a single-hop wireless connection to communicate with one or many gateways.

 The data rate in LoRaWAN varies depending on the frequency bands and adaptive data rate

(ADR).

 ADR is an algorithm that manages the data rate and radio signal for each endpoint.

 The ADR algorithm ensures that packets are delivered at the best data rate possible and that
network performance is both optimal and scalable.

 Endpoints close to the gateways with good signal values transmit with the highest data rate,

which enables a shorter transmission time over the wireless network, and the lowest transmit

power.

 An important feature of LoRa is its ability to handle various data rates via the spreading
factor.

 Devices with a low spreading factor (SF) achieve less distance in their communications but

transmit at faster speeds, resulting in less airtime. A higher SF provides slower transmission

rates but achieves a higher reliability at longer distances.

Internet of Things 18EC64

Page 49

 MAC Layer

 The LoRaWAN specification documents three classes of LoRaWAN devices:

o Class A:
 This class is the default implementation.

 Optimized for battery-powered nodes, it allows bidirectional

communications, where a given node is able to receive downstream traffic

after transmitting.

 Two receive windows are available after each transmission.

o Class B:

 This class was designated ―experimental‖ in LoRaWAN 1.0.1 until it can

be better defined.

 A Class B node or endpoint should get additional receive windows

compared to Class A, but gateways must be synchronized through a

beaconing process.

o Class C:
 This class is particularly adapted for powered nodes.
 This classification enables a node to be continuously listening by keeping

its receive window open when not transmitting.

 LoRaWAN messages, either uplink or downlink, have a PHY payload composed of a 1-byte

MAC header, a variable-byte MAC payload, and a MIC that is 4 bytes in length.

 The MAC payload size depends on the frequency band and the data rate, ranging from 59 to

230 bytes for the 863–870 MHz band and 19 to 250 bytes for the 902–928 MHz band.

 Figure 2.17 shows a high-level LoRaWAN MAC frame format.

Figure 2.17: High-Level LoRaWAN MAC Frame Format

 In version 1.0.x, LoRaWAN utilizes six MAC message types

o Join request : over-the-air (OTA) activation and joining the network.

o Join accept messages: over-the-air (OTA) activation and joining the network.

o Unconfirmed data up/down message : End device does not need to acknowledge

o Confirmed data up/down message : A message that must be acknowledged

o Uplink messages: These messages are sent from endpoints to the network server and

are relayed by one or more LoRaWAN gateways

o Downlink messages: These messages flow from the network server to a single

endpoint and are relayed by only a single gateway.

 LoRaWAN endpoints are uniquely addressable through a variety of methods.

 An endpoint can have a global end device ID or DevEUI represented as an IEEE EUI-64

address.

 An endpoint can have a global application ID or AppEUI represented as an IEEE EUI-64

address that uniquely identifies the application provider, such as the owner, of the end device.

 In a LoRaWAN network, endpoints are also known by their end device address, known as a

DevAddr, a 32-bit address.

https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch04.html#ch04fig16
https://learning.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/ch04.html#ch04fig16

Internet of Things 18EC64

Page 50

 The 7 most significant bits are the network identifier (NwkID), which identifies the
LoRaWAN network.

 The 25 least significant bits are used as the network address (NwkAddr) to identify the

endpoint in the network.

 Topology

 LoRaWAN topology is often described as a ―star of stars‖ topology.

 The infrastructure consists of endpoints exchanging packets through gateways acting as

bridges, with a central LoRaWAN network server.

 Gateways connect to the backend network using standard IP connections, and endpoints

communicate directly with one or more gateways.

Figure 2.18: LoRaWAN Architecture

 In the figure 2.18 LoRaWAN endpoints transport their selected application data over the

LoRaWAN MAC layer on top of one of the supported PHY layer frequency bands.

 LoRaWAN gateways act as bridges that relay between endpoints and the network servers.

 Multiple gateways can receive and transport the same packets. When duplicate packets are

received, de-duplication is a function of the network server.

 The LoRaWAN network server manages the data rate and radio frequency (RF) of each

endpoint through the adaptive data rate (ADR) algorithm.

 ADR is a key component of the network scalability, performance, and battery life of the

endpoints.

 Security:

 LoRaWAN endpoints must implement two layers of security, protecting communications and

data privacy across the network.

 Security in a LoRaWAN deployment applies to different components of the architecture as
shown in figure 2.19

Internet of Things 18EC64

Page 51

Figure 2.19: LoRaWAN Security

 The first layer, called ―network security‖ but applied at the MAC layer, guarantees the
authentication of the endpoints by the LoRaWAN network server.

 Also, it protects LoRaWAN packets by performing encryption based on AES.

 Each endpoint implements a network session key (NwkSKey), used by both itself and the

LoRaWAN network server.

 The NwkSKey ensures data integrity through computing and checking the MIC of every data

message as well as encrypting and decrypting MAC-only data message payloads.

 The second layer is an application session key (AppSKey), which performs encryption and

decryption functions between the endpoint and its application server.

 Furthermore, it computes and checks the application-level MIC, if included.

 This ensures that the LoRaWAN service provider does not have access to the application
payload if it is not allowed that access.

 Endpoints receive their AES-128 application key (AppKey) from the application owner.

 This key is most likely derived from an application-specific root key exclusively known to and

under the control of the application provider.

 LoRaWAN endpoints attached to a LoRaWAN network must get registered and authenticated.

This can be achieved through one of the two join mechanisms:

o Activation by personalization (ABP):

 Endpoints don‘t need to run a join procedure as their individual details,

including DevAddr and the NwkSKey and AppSKey session keys, are

preconfigured and stored in the end device.

 This same information is registered in the LoRaWAN netwrk server.

o Over-the-air activation (OTAA):

 Endpoints are allowed to dynamically join a particular LoRaWAN network
after successfully going through a join procedure.

 The join procedure must be done every time a session context is renewed.

 During the join process, which involves the sending and receiving of MAC

layer join request and join accept messages, the node establishes its credentials

with a LoRaWAN network server, exchanging its globally unique DevEUI,

AppEUI, and AppKey.

Internet of Things 18EC64

Page 52

 The AppKey is then used to derive the session NwkSKey and AppSKey keys.

 NB-IoT and Other LTE Variations:

 Because the new LTE-M device category was not sufficiently close to LPWA capabilities,

in 2015 3GPP approved a proposal to standardize a new narrowband radio access

technology called Narrowband IoT (NB-IoT).

 NB-IoT specifically addresses the requirements of a massive number of low-throughput

devices, low device power consumption, improved indoor coverage, and optimized

network architecture.

 LTE Cat 0

 The first enhancements to better support IoT devices in 3GPP occurred in LTE Release 12.

 A new user equipment (UE) category, Category 0, was added, with devices running at a

maximum data rate of 1 Mbps.

 Category 0 includes important characteristics to be supported by both the network and end
devices These Cat 0 characteristics include the following:

 Power saving mode (PSM):

 This new device status minimizes energy consumption. Energy consumption is expected to

be lower with PSM than with existing idle mode. PSM is defined as being similar to

―powered off‖ mode, but the device stays registered with the network.

 Half-duplex mode: This mode reduces the cost and complexity of a device‘s

implementation because a duplex filter is not needed. Most IoT endpoints are sensors that

send low amounts of data that do not have a full-duplex communication requirement.

 LTE-M

 Following LTE Cat 0, the next step in making the licensed spectrum more supportive of IoT
devices was the introduction of the LTE-M category for 3GPP LTE Release 13.

 These are the main characteristics of the LTE-M category in Release 13:

o Lower receiver bandwidth: Bandwidth has been lowered to 1.4 MHz versus the usual 20
MHz. This further simplifies the LTE endpoint.

o Lower data rate: Data is around 200 kbps for LTE-M, compared to 1 Mbps for Cat 0.
o Half-duplex mode: Just as with Cat 0, LTE-M offers a half-duplex mode that decreases

node complexity and cost.

o Enhanced discontinuous reception (eDRX):

 This capability increases from seconds to minutes the amount of time an endpoint

can ―sleep‖ between paging cycles.

 A paging cycle is a periodic check-in with the network. This extended ―sleep‖

time between paging cycles extends the battery lifetime for an endpoint

significantly.

 NB-IoT

 The work on NB-IoT started with multiple proposals pushed by the involved vendors,

including the following:

o Extended Coverage GSM (EC-GSM), Ericsson proposal

Internet of Things 18EC64

Page 53

o Narrowband GSM (N-GSM), Nokia proposal

o Narrowband M2M (NB-M2M), Huawei/Neul proposal
o Narrowband OFDMA (orthogonal frequency-division multiple access), Qualcomm

proposal

o Narrowband Cellular IoT (NB-CIoT), combined proposal of NB-M2M and NB-
OFDMA

o Narrowband LTE (NB-LTE), Alcatel-Lucent, Ericsson, and Nokia proposal

o Cooperative Ultra Narrowband (C-UNB), Sigfox proposal

 Three modes of operation are applicable to NB-IoT:
o Standalone: A GSM carrier is used as an NB-IoT carrier, enabling reuse of 900 MHz

or 1800 MHz.

o In-band:
o Part of an LTE carrier frequency band is allocated for use as an NB-IoT

frequency.

o The service provider typically makes this allocation, and IoT devices are
configured accordingly.

o Guard band: An NB-IoT carrier is between the LTE or WCDMA bands. This
requires coexistence between LTE and NB-IoT bands.

Figure 2.20: NB-IoT Deployment Options

 In an LTE network, resource blocks are defined with an effective bandwidth of 180 kHz,

while on NB-IoT, tone or subcarriers replace the LTE resource blocks.

 NB-IoT operates in half-duplex frequency-division duplexing (FDD) mode with a maximum

data rate uplink of 60 kbps and downlink of 30 kbps.

 Topology

 NB-IoT is defined with a link budget of 164 dB.

Main Characteristics of Access Technologies is given in Table 2.5

Internet of Things 18EC64

Page 54

Table 2.5 : Characteristics of Access Technologies

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 1

Module-3

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 2

 THE BUSINESS CASE FOR IP

 Data flowing from or to “things” is consumed, controlled, or monitored by data center servers

either in the cloud or in locations that may be distributed or centralized.

 Dedicated applications are then run over virtualized or traditional operating systems or on

network edge platforms (for ex-ample, fog computing).

 The system solutions combining various physical and data link layers call for an architectural

approach with a common layer(s) independent from the lower (connectivity) and/or upper

(application) layers. This is how and why the Internet Protocol (IP) suite started playing a key

architectural role in the early 1990s. IP was not only preferred in the IT markets but also for the

OT environment.

 The Key Advantages of Internet Protocol

1) Open and standards-based: Operational technologies have often been delivered as turn key

features by vendors who may have optimized the communication through closed and

proprietary networking solutions.

2) Versatile: A large spectrum of access technologies is available to offer connectivity of

“things” in the last mile. Additional protocols and technologies are also used to transport IoT

data through backhaul links and in the data center.

3) Ubiquitous: All recent operating system releases, from general purpose computers and

servers to lightweight embedded systems (TinyOS, Contiki, and so on), have an integrated

dual (IPv4 and IPv6) IP stack that gets enhanced over time.

4) Scalable: As the common protocol of the Internet, IP has been massively deployed and tested

for robust scalability.

5) Manageable and highly secure: Communications infrastructure requires appropriate

management and security capabilities for proper operations. Well-known network and

security management tools are easily leveraged with an IP network layer.

6) Stable and resilient: IP has a large and well-established know-ledge base and, more

importantly, it has been used for years in critical infrastructures, such as financial and defense

networks.

7) Consumers’ market adoption: When developing IoT solutions and products targeting the

consumer market, vendors know that consumers access to applications and devices will occur

predominantly over broad-band and mobile wireless infrastructure.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 3

8) The innovation factor: The past two decades have largely established the adoption of IP as a

factor for increased innovation. IP is the underlying protocol for applications ranging from

file transfer and e-mail to the World Wide Web, e-commerce, social networking, mobility,

and more. IP is a standard based protocol that is ubiquitous, scalable, versatile, and stable

 Adoption or Adaptation of the Internet Protocol

 The use of numerous network layer protocols in addition to IP is often a point of

contention between computer networking experts.

 Adaptation means application layered gateways must be implemented to ensure the

translation between non-IP and IP layer

 Adoption involves replacing all non-IP layers with their IP layer counter parts,

simplifying the deployment model and operations.

 Supervisory control and data acquisition (SCADA) applications are typical examples of

vertical market deployments that operate both the IP adaptation model and the adoption

model.

 We should consider the following factors when trying to determine which model is best

suited for last-mile connectivity:

1) Bidirectional versus unidirectional data flow: While bidirectional communications are

generally expected, some last-mile technologies offer optimization for unidirectional

communication.

 For example: different classes of IoT devices, as defined in RFC 7228

 If there is only one-way communication to upload data to an application, then it is not

possible to download new software or firmware to the devices. This makes integrating

new features and bug and security fixes more difficult.

2) Overhead for last-mile communications paths: IP adoption implies a layered

architecture with a per-packet overhead that varies depending on the IP version. This

same consideration applies to control plane traffic that is run over IP for low-bandwidth,

last-mile links. Routing protocol and other verbose network services may either not be

required or call for optimization.

3) Data flow model: One benefit of the IP adoption model is the end-to-end nature of

communications. Any node can easily exchange data with any other node in a network,

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 4

although security, privacy, and other factors may put controls and limits on the “end-to-

end” concept.

4) Network diversity: One of the drawbacks of the adaptation model is a general

dependency on single PHY and MAC layers. For example, ZigBee devices must only be

deployed in ZigBee network islands. A deployment must consider which applications

have to run on the gateway connecting these islands and the rest of the world. Integration

and coexistence of new physical and MAC layers or new applications impact how

deployment and operations have to be planned. This is not a relevant consideration for

the adoption model.

THE NEED FOR OPTIMIZATION

The Internet of Things will largely be built on the Internet Protocol suite. However, challenges still exist

for IP in IoT solutions. In addition to coping with the integration of non-IP devices, we may need to deal

with the limits at the device and network levels that IoT often imposes. Therefore, optimizations are

needed at various layers of the IP stack to handle the restrictions that are present in IoT networks.

 Constrained Nodes

 Depending on its functions in a network a “thing” architecture may or may not offer similar

characteristics compared to a generic PC or server in an IT environment.

 IoT constrained nodes can be classified as follows:

 Devices that are very constrained in resources, may communicate infrequently to transmit a

few bytes, and may have limited security and management capabilities: This drives the need

for the IP adaptation model, where nodes communicate through gateways and proxies.

 Devices with enough power and capacities to implement a stripped-down IP stack or non-IP

stack: In this case, you may implement either an optimized IP stack and directly communicate

with application servers (adoption model) or go for an IP or non-IP stack and communicate

through gateways and proxies (adaptation model).

 Devices that are similar to generic PCs in terms of computing and power resources but have

constrained networking capacities, such as bandwidth: These nodes usually implement a full

IP stack(adoption model), but network design and application behaviors must cope with the

bandwidth constraints.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 5

 Constrained Networks

 Network bandwidth capacity was restrained due to technical limitations. Connections often

depended on low-speed modems for transferring data.

 Constrained networks have unique characteristics and requirements. In contrast with typical IP

networks, where highly stable and fast links are available, constrained networks are limited by

low-power, low-bandwidth links (wireless and wired).

 They operate between a few kbps and a few hundred kbps and may utilize a star, mesh, or

combined network topologies, ensuring proper operations.

 Control plane traffic must also be kept at a minimum; otherwise, it consumes the bandwidth that

is needed by the data traffic.

 The power consumption in battery-powered nodes must be considered. Any failure or verbose

control plane protocol may reduce the lifetime of the batteries.

 Constrained nodes and networks pose major challenges for IoT connectivity in the last mile. This

in turn has led various standards organizations to work on optimizing protocols for IoT.

 IP Versions

 The IETF (The Internet Engineering Task Force) has been working on transitioning the Internet

from IP version 4 to IP version 6.

 The main driving force has been the lack of address space in IPv4 as the Internet has grown. IPv6

has a much larger range of addresses that should not be exhausted for the foreseeable future.

. The following are some of the main factors applicable to IPv4 and IPv6 support in an IoT solution:

 Application Protocol: IoT devices implementing Ethernet or Wi-Fi interfaces can communicate

over both IPv4 and IPv6, but the application protocol may dictate the choice of the IP version.

 Cellular Provider and Technology: IoT devices with cellular modems are dependent on the

generation of the cellular technology as well as the data services offered by the provider

 Serial Communications: Many legacy devices in certain industries, such as manufacturing and

utilities, communicate through serial lines. Data is transferred using either proprietary or

standards-based protocols

 IPv6 Adaptation Layer: IPv6-only adaptation layers for some physical and data link layers for

recently standardized IoT protocols support only IPv6. While the most common physical and data

link layers (Ether-net, Wi-Fi, and so on) specify adaptation layers for both versions, newer

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 6

technologies, such as IEEE 802.15.4 (Wireless Personal Area Network),IEEE 1901.2, and ITU

G.9903 (Narrowband Power Line Communications).

OPTIMIZING IP FOR IOT

 The Internet Protocol is key for a successful Internet of Things, constrained nodes and

constrained networks mandate optimization at various layers and on multiple protocols of the IP

architecture

 Figure: Optimizing IP for IOT using an Adaptation Layer

 From 6LoWPAN to 6Lo

 In the IP architecture, the transport of IP packets over any given Layer 1(PHY) and Layer

2 (MAC) protocol must be defined and documented. The model for packaging IP into

lower-layer protocols is often referred to as an adaptation layer.

 The main examples of adaptation layers optimized for constrained nodes or “things” are

the ones under the 6LoWPAN working group and its successor, the 6Lo working group.

 The initial focus of the 6LoWPAN working group was to optimize the transmission of

IPv6 packets over constrained networks such as IEEE 802.15.4.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 7

Figure: 6LOWPAN Header Stack

The above figure shows the sub-headers related to compression, fragmentation and mesh addressing.

 Header Compression

 IPv6 header compression for 6LoWPAN was defined initially in RFC 4944and

subsequently updated by RFC 6282

 Note that header compression for 6LoWPAN is only defined for an IPv6header and not

IPv4

 6LoWPAN header compression is stateless, and conceptually it is not too complicated.

 A number of factors affect the amount of compression, such as implementation of RFC

4944 versus RFC 6922, whether UDP is included, and various IPv6 addressing cases

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 8

 Figure: 6LOWPAN Header Compression

 At the top of Figure we can see a 6LoWPAN frame without any header compression

enabled: The full 40-byte IPv6 header and 8-byte UDP header are visible. The

6LoWPAN header is only a single byte in this case. Notice that uncompressed IPv6 and

UDP headers leave only 53 bytes of data payload out of the 127-byte maximum frame

size in the case of IEEE802.15.4.

 The bottom half of Figure shows a frame where header compression has been enabled for

a best-case scenario. UDP has been reduced in half, to 4 bytes from 8. The compressed

40 byte IPv6 header is put in the 2bytes header section. Most importantly, the header

compression has allowed the payload to more than double, from 53 bytes to 108 bytes,

which is obviously much more efficient.

 Fragmentation

 The maximum transmission unit (MTU) for an IPv6 network must be atleast 1280

bytes. The term MTU defines the size of the largest protocol data unit that can be

passed

 The fragment header utilized by 6LoWPAN is composed of three primary fields:

Datagram Size (total size of un-fragmented payload), Datagram Tag(identifies set

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 9

of fragments), and Datagram Offset(indicates how many fragments are

remaining).

 The 6LoWPAN fragmentation header field itself uses a unique bit value to

identify that the subsequent fields behind it are fragment fields

 The first fragmentation header for an IPv6 payload being only 4 bytes long. The

remainder of the fragments have a 5-byte header field

 Mesh Addressing

 The purpose of the 6LoWPAN mesh addressing function is to forward packets

over multiple hops.

 Three fields are defined for this header: Hop Limit, Source Address, and

Destination Address.

 The hop limit for mesh addressing also provides an upper limit on how many

times the frame can be forwarded. Each hop decrements this value by 1 as it is

forwarded. Once the value hits 0, it is dropped and no longer forwarded.

 The Source Address and Destination Address fields for mesh addressing are IEEE

802.15.4 addresses indicating the endpoints of an IP hop.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 10

 Mesh Under versus Mesh Over Routing

 For network technologies such as IEEE 802.15.4, IEEE 802.15.4g, and IEEE 1901.2a

that support mesh topologies and operate at the physical and data link layers, two main options

exist for establishing reachability and forwarding packets. With the first option, mesh-under, the

routing of packets is handled at the 6LoWPAN adaptation layer. The other option, known as

“mesh-over” or “route-over,” utilizes IP routing for getting packets to their destination.

 6TiSCH

 Time-Slotted Channel Hopping (TSCH), is an add-on to the Media Access Control

(MAC) portion of the IEEE 802.15.4 standard, with direct inheritance from other

standards, such as Wireless HART and ISA100.11a.

 Devices implementing IEEE 802.15.4e TSCH communicate by following a Time

Division Multiple Access (TDMA) schedule.

Figure: Location of 6TiSCH’S 6 TOP Sublayer

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 11

 Schedules in 6TiSCH are broken down into cells. A cell is simply a single element in the

TSCH schedule that can be allocated for unidirectional or bidirectional communications

between specific nodes. Nodes only transmit when the schedule dictates that their cell is

open for communication.

 The 6TiSCH architecture defines four schedule management mechanisms

 Static scheduling: All nodes in the constrained network share a fixed schedule.

Cells are shared, and nodes contend for slot access in a slotted aloha manner.

Slotted aloha is a basic protocol for sending data using time slot boundaries

when communicating over a shared medium. Static scheduling is a simple

scheduling mechanism that can be used upon initial implementation or as a

fallback in the case of network malfunction. The drawback with static scheduling

is that nodes may expect a packet at any cell in the schedule. Therefore, energy is

wasted idly listening across all cells.

 Neighbor-to-neighbor scheduling: A schedule is established that correlates

with the observed number of transmissions between nodes. Cells in this schedule

can be added or deleted as traffic requirements and bandwidth needs change.

 Remote monitoring and scheduling management: Time slots and other

resource allocation are handled by a management entity that can be multiple hops

away. The scheduling mechanism provides quite a bit of flexibility and control in

allocating cells for communication between nodes.

 Hop-by-hop scheduling: A node reserves a path to a destination node multiple

hops away by requesting the allocation of cells in a schedule at each intermediate

node hop in the path.

 There are three 6TiSCH forwarding models:

 Track Forwarding (TF): This is the simplest and fastest forwarding model. A

“track” in this model is a unidirectional path between a source and a destination. This

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 12

track is constructed by pairing bundles of receive cells in a schedule with a bundle of

receive cells set to transmit.

 Fragment forwarding (FF): This model takes advantage of 6LoWPAN

fragmentation to build a Layer 2 forwarding table. The 6LoWPAN sublayer learns the

next-hop selection of this first fragment, which is then applied to all subsequent

fragments of that packet. Otherwise, IPv6 packets undergo hop-by-hop reassembly.

This increases latency and can be power- and CPU-intensive for a constrained node.

 IPv6 Forwarding (6F): This model forwards traffic based on its IPv6 routing table.

Flows of packets should be prioritized by traditional QoS (quality of service) and

RED (random early detection) operations. QoS is a classification scheme for flows

based on their priority, and RED is a common congestion avoidance mechanism.

 RPL

 The new distance-vector routing protocol was named the IPv6 Routing Protocol for

Low Power and Lossy Networks (RPL).

 The RPL specification was published as RFC 6550 by the RoLL.

 In an RPL network, each node acts as a router and becomes part of a mesh network.

Routing is performed at the IP layer. Each node examines every received IPv6 packet

and determines the next-hop destination based on the information contained in the

IPv6 header

 To cope with the constraints of computing and memory that are common

characteristics of constrained nodes, the protocol defines two modes:

 Storing mode: All nodes contain the full routing table of the RPL do-main. Every

node knows how to directly reach every other node.

 Non-storing mode: Only the border router(s) of the RPL domain contain the full

routing table. All other nodes in the domain only maintain their list of parents and

use this as a list of default routes toward the border router.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 13

RPL is based on the concept of a directed acyclic graph (DAG). A DAG is a directed

graph where no cycles exist.

 Figure: Direct Acrylic Graph and DODAG

A basic RPL process involves building a destination-oriented directed acyclic graph (DODAG).

A DODAG is a DAG rooted to one destination. In RPL, this destination occurs at a border router

known as the DODAG root.

Figure compares a DAG and a DODAG. We can see that that a DAG has multiple roots, whereas

the DODAG has just one.

In a DODAG, each node maintains up to three parents that provide a path to the root. Typically,

one of these parents is the preferred parent, which means it is the preferred next hop for upward

routes toward the root.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 14

Figure: RPL overview

 Upward routes in RPL are discovered and configured using DAG Information Object

(DIO) messages.

 The information in DIO messages determines parents and the best path to the DODAG

root.

 Destination Advertisement Object (DAO) message. DAO messages allow nodes to

inform their parents of their presence and reach ability to descendants.

 An objective function (OF) defines how metrics are used to select routes and establish a

node’s rank.

 The rank is a rough approximation of how “close” a node is to the root and helps avoid

routing loops and the count-to-infinity problem.

 Specific network layer headers are defined for datagrams being forwarded within an RPL

domain.

 RFC 6554 specifies the Source Routing Header (SRH) for use between RPL routers. A

border router or DODAG root inserts the SRH when specifying a source route to deliver

datagrams to nodes downstream in the mesh network

 RPL defines a large and flexible set of new metrics and constraints for routing in RFC

6551. Some of the RPL routing metrics and constraints defined in RFC6551 include the

following:

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 15

 Expected Transmission Count (ETX): Assigns a discrete value to the number of

transmissions a node expects to make to deliver a packet.

 Hop Count: Tracks the number of nodes traversed in a path. Typically, a path with a

lower hop count is chosen over a path with a higher hop count.

 Latency: Varies depending on power conservation. Paths with a lower latency are

preferred.

 Link Quality Level: Measures the reliability of a link by taking into account packet error

rates caused by factors such as signal attenuation and interference.

 Link Color: Allows manual influence of routing by administratively setting values to

make a link more or less desirable. These values can be either statically or dynamically

adjusted for specific traffic types.

 Node State and Attribute: Identifies nodes that function as traffic aggregators and nodes

that are being impacted by high workloads. High workloads could be indicative of nodes

that have incurred high CPU or low memory states. Naturally, nodes that are aggregators

are preferred over nodes experiencing high workloads.

 Node Energy: Avoids nodes with low power, so a battery-powered node that is running

out of energy can be avoided and the life of that node and the network can be prolonged.

 Throughput: Provides the amount of throughput for a node link. Of-ten, nodes

conserving power use lower throughput. This metric allows the prioritization of paths

with higher throughput.

Authentication and Encryption on Constrained Nodes

IETF has mentioned two security working groups: ACE and DICE.

 ACE

 Like the RoLL working group, the Authentication and Authorization for Constrained

Environments (ACE) working group is tasked with evaluating the applicability of existing

authentication and authorization protocols and documenting their suitability for certain

constrained-environment use cases.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 16

DICE

The DTLS in Constrained Environments (DICE) working group focuses on implementing the

DTLS transport layer security protocol in these environments. The first task of the DICE

working group is to define an optimized DTLS profile for constrained nodes.

PROFILES AND COMPLIANCES

The Internet Protocol suite for smart objects involves a collection of protocols and options that

must work in coordination with lower and upper layers. Therefore, profile definitions,

certifications, and promotion by alliances can help implementers develop solutions that

guarantee interoperability and/or inter-changeability of devices.

Some of the main industry organizations working on profile definitions and certifications for IoT

constrained nodes and networks.

 Internet Protocol for Smart objects (IPSO) Alliance:

Established in 2008, the Internet Protocol for Smart Objects (IPSO) Alliance has had its

objective evolve over years. The alliance initially focused on promoting IP as the premier

solution for smart objects communications. The IPSO Alliance does not define technologies, as

that is the role of the IETF and other standard organizations, but it documents the use of IP-based

technologies for various IoT use cases and participates in educating the industry.

 Wi-SUN Alliance

The Wi-SUN Alliance is an example of efforts from the industry to define a

communication profile that applies to specific physical and data link layer protocols.

 Thread

A group of companies involved with smart object solutions for consumers created the

Thread Group. This group has defined an IPv6-based wireless profile that provides the

best way to connect more than 250 devices into a low-power, wireless mesh network

 IPv6 Ready Logo

The IPv6 Ready Logo program has established conformance and inter operability testing

programs with the intent of increasing user confidence when implementing IPv6. The

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 17

IPv6 Core and specific IPv6 components, such as DHCP, IPsec, and customer edge router

certifications, are in place.

CHAPTER2: APPLICATION PROTOCOLS FOR IOT

THE TRASNPORT LAYER

IoT networks which supports TCP/IP architecture uses two main protocols in transport layer.

Transmission Control Protocol (TCP): This connection-oriented protocol requires a session to

get established between the source and destination before exchanging data.

User Datagram Protocol (UDP): With this connectionless protocol, data can be quickly sent

between source and destination—but with no guarantee of delivery.

TCP is the main protocol used at the transport layer. This is largely due to its inherent

characteristics, such as its ability to transport large volumes of data into smaller sets of packets.

In addition, it ensures reassembly in a correct sequence, flow control and window adjustment,

and retransmission of lost packets. These benefits occur with the cost of overhead per packet and

per session, potentially impacting overall packet per second performances and latency

 UDP is most often used in the context of network services, such as Domain Name System

(DNS), Network Time Protocol (NTP), Simple Network Management Protocol (SNMP), and

Dynamic Host Control Protocol (DHCP), or for real-time data traffic, including voice and video

over IP. In these cases, performance and latency are more import-ant than packet retransmissions

because re-sending a lost voice or video packet does not add value. When the reception of

packets must be guaranteed error free, the application layer protocol takes care of that function.

Use of TCP in constrained IOT platform and high data rate environments is highly challenging.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 18

IOT APPLICATION TRANSPORT METHODS

The different types of IoT application protocols have various means for transporting these

protocols across a network. The following categories of IoT application protocols and their

transport methods are considered.

 Application layer protocol not present

 Supervisory control and data acquisition (SCADA)

 Generic web-based protocols

 IoT application layer protocols

 Application layer protocol not present

 IETF RFC 7228 devices defined as class 0send or receive only a few bytes of data. Class

0 devices are usually simple smart objects that are severely constrained.

Figure: IOT Broker

In the figure, the different kinds of temperature sensors from different manufacturers are used.

These sensors will report temperature data in varying formats. If we increase the number of

sensors upto thousands in the application. The interpreting the received temperature in different

formats becomes complex. The solution to this problem is to use IOT Broker.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 19

An IoT data broker is a piece of middleware that standardizes sensor output into a common

format that can then be retrieved by authorized applications.

In the figure, Sensors X, Y, and Z are all temperature sensors, but their output is encoded

differently. The IoT data broker understands the different formats in which the temperature is

encoded and is therefore able to decode this data into a common, standardized format.

Applications A, B and C can access this temperature data without having to deal with decoding

multiple temperature data formats.

 Supervisory control and data acquisition (SCADA)

 Combined with the fact that IP is the default standard for computer networking in

general, older protocols that connected sensors and actuators have evolved and adapted them to

utilize IP.

At a high level, SCADA systems collect sensor data and telemetry from re-mote devices, while

also providing the ability to control them. Used in today’s networks, SCADA systems allow

global, real-time, data-driven decisions to be made about how to improve business processes

 Adapting SCADA for IP

In the 1990s, the rapid adoption of Ethernet networks in the industrial world led to the

evolution of SCADA application layer protocols.

To further facilitate the support of legacy industrial protocols over IP net-works, protocol

specifications were updated and published, documenting the use of IP for each protocol.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 20

Figure: Protocol Stack for Transporting Serial DNP3(Distributed Network protocol)

 Like many of the other SCADA protocols, DNP3 is based on a master/slave

relationship. The term master in this case refers to what is typically a powerful

computer located in the control center of a utility, and a slave is a remote device with

computing resources found in a location such as a substation. DNP3 refers to slaves

specifically as outstations.

 Outstations monitor and collect data from devices that indicate their state, such as

whether a circuit breaker is on or off, and take measurements, including voltage,

current, temperature, and so on.

 Connection management links the DNP3 layers with the IP layers in addition to the

configuration parameters and methods necessary for implementing the network

connection.

 The DNP3 end points or devices are not aware of the underlying IP transport that is

occurring.

 The master side initiates connections by performing a TCP active open. The

outstation listens for a connection request by performing a TCP passive open.

 Dual endpoint is defined as processes that can both listen for connection requests and

perform an active open on the channel if required.

 Keepalive messages are implemented as DNP3 data link layer status requests. If a

response is not received to a keepalive message, the connection is deemed broken,

and the appropriate action is taken.

 SCADA Protocol Translation

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 21

Figure: DNP3 translation

 Figure shows two serially connected DNP3 RTUs and two master applications

supporting DNP3 over IP that control and pull data from the RTUs.

 The IoT gateway in this figure performs a protocol translation function that enables

communication between the RTUs and servers, despite the fact that a serial

connection is present on one side and an IP connection is used on the other.

 By running protocol translation, the IoT gateway connected to the RTUs in Figure is

implementing a computing function close to the edge of the network. Adding

computing functions close to the edge helps scale distributed intelligence in IoT

networks.

 SCADA Transport over LLNs with MAP-T

Figure: DNP3 Protocol over 6LOWPAn Networks with MAP-T

 The above figure shows a scenario in which a legacy endpoint is connected across an

LLN (Low Power and Lossy Network) running 6LoWPAN (IPv6 over Low Power

Wireless Personal Area Network) to an IP-capable SCADA server.

 The legacy endpoint could be running various industrial and SCADA proto-cols

including DNP3/IP, Modbus/TCP, or IEC 60870-5-104.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 22

 In this case the legacy devices and the SCADA server support only IPv4 and IPv6 is

being used for connectivity to the endpoint.

 6LoWPAN is a standardized protocol designed for constrained networks, but it only

supports IPv6.

 In this situation, the end devices, the endpoints, and the SCADA server support only

IPv4, but the network in the middle supports only IPv6.

 The solution to this problem is to use the protocol known as MAP-T

 The IPv4 endpoint on the left side is connected to a Customer Premise Equipment

(CPE) device. The MAP-T CPE device has anIPv6 connection to the RPL mesh. On

the right side, a SCADA server with native IPv4 support connects to a MAP-T border

gateway. The MAP-TCPE device and MAP-T border gateway are thus responsible for

the MAP-T conversion from IPv4 to IPv6.

 Generic Web-Based Protocols

 Web based protocols have become common in consumer and enterprise applications

and services. Therefore, it makes sense to try to use these protocols when developing

IoT applications, services, and devices in order to ease the integration of data and

devices from prototyping to production.

 The HTTP/HTTPS client/server model serves as the foundation for the World Wide

Web. Recent evolutions of embedded web server software with advanced features are

now implemented with very little memory

 Interactions between real-time communication tools powering collaborative

applications, such as voice and video, instant messaging, chat rooms, and IoT devices,

are also emerging.

 This is driving the need for simpler communication systems between people and IoT

devices. One protocol that addresses this need is Extensible Messaging and Presence

Protocol (XMPP).

 IoT Application Layer Protocols

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 23

 When considering constrained networks and/or a large-scale deployment of

constrained nodes, verbose web-based and data model protocols, may be too

heavy for IoT applications.

 Two of the most popular protocols are MQTT and CoAP.

Figure: Example of a High-Level IoT Protocol Stack for CoAP and MQTT

In the above figure, CoAP and MQTT are naturally at the top of this sample IoT stack,

based on an IEEE 802.15.4 mesh network.

 CoAP

 Constrained Application Protocol (CoAP) resulted from the IETF Con-strained

RESTful Environments (CoRE) working group’s efforts to de-velop a generic

framework for resource-oriented applications targeting constrained nodes and

networks.

 The CoAP framework defines simple and flexible ways to manipulate sensors and

actuators for data or device management.

 The IETF CoRE working group has published multiple standards-track

specifications for CoAP, including the following:

RFC 6690: Constrained RESTful Environments (CoRE) Link Format

RFC 7252: The Constrained Application Protocol (CoAP)

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 24

RFC 7641: Observing Resources in the Constrained Application Protocol (CoAP)

RFC 7959: Block-Wise Transfers in the Constrained Application Protocol (CoAP)

RFC 8075: Guidelines for Mapping Implementations: HTTP to the Constrained

Application Protocol (CoAP).

Figure: CoAP Message Format

In the above figure, the CoAP message format is relatively simple and flexible. It allows

CoAP to deliver low overhead, which is critical for constrained networks, while also

being easy to parse and process for con-strained devices.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 25

Table: CoAP Message Fields

Figure: CoAP Reliable Transmission Example

Figure shows a utility operations center on the left, acting as the CoAP client, with the CoAP

server being a temperature sensor on the right of the figure. The communication between the

client and server uses a CoAP message ID of 0x47. The CoAP Message ID ensures reliability

and is used to detect duplicate messages.

 Message Queuing Telemetry Transport (MQTT)

 At the end of the 1990s, engineers from IBM and Arcom (acquired in2006 by

Eurotech) were looking for a reliable, lightweight, and cost-effective protocol to

monitor and control a large number of sensors and their data from a central server

location.

 They have introduced a client/server and publish/ subscriber framework based on

the TCP/IP architecture.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 26

 An MQTT client can act as a publisher to send data (or resource information) to

an MQTT server acting as an MQTT message broker.

 The above figure shows the MQTT Publish/Subscribe framework

 The MQTT client on the left side of figure is a temperature (Temp) and relative

humidity (RH) sensor that publishes its Temp/RH data.

 The MQTT server (or message broker) accepts the net-work connection along

with application messages, such as Temp/RH data, from the publishers. It also

handles the subscription and unsubscription process and pushes the application

data to MQTT clients acting as subscribers.

 The application on the right side of figure is an MQTT client that is a subscriber

to the Temp/RH data being generated by the publisher or sensor on the left.

 MQTT control packets run over a TCP transport using port 1883. TCP ensures an

ordered, lossless stream of bytes between the MQTT client and the MQTT server.

 MQTT is a lightweight protocol because each control packet consists of a2-byte

fixed header with optional variable header fields and optional pay-load.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 27

Figure: MQTT message format

 Compared to the CoAP message format in, MQTT contains a smaller header of 2

bytes compared to 4 bytes for CoAP. The first MQTT field in the header is

Message Type, which identifies the kind of MQTT packet within a message.

Fourteen different types of control packets are specified in MQTT version 3.1.1.

Each of them has a unique value that is coded into the Message Type field. Note

that values 0and 15 are reserved. MQTT message types are summarized in the

below Table

Table: MQTT Message Types

 The next field in the MQTT header is DUP (Duplication Flag). This flag, when set,

allows the client to notate that the packet has been sent previously, but an

acknowledgement was not received.

 The QoS header field allows for the selection of three different QoS levels. These are

discussed in more detail later in this chapter.

 The next field is the Retain flag. Only found in a PUBLISH message. The Retain flag

notifies the server to hold onto the message data. This allows new subscribers to instantly

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 28

receive the last known value without having to wait for the next update from the

publisher.

 The last mandatory field in the MQTT message header is Remaining Length. This field

specifies the number of bytes in the MQTT packet following this field.

 MQTT sessions between each client and server consist of four phases: session

establishment, authentication, data exchange, and session termination. Each client

connecting to a server has a unique client ID.

 The MQTT protocol offers three levels of quality of service (QoS)

 QoS 0: This is a best-effort and unacknowledged data service referred to as “at most

once” delivery. The publisher sends its message one time to a server, which transmits it

once to the subscribers. No response is sent by the receiver, and no retry is performed by

the sender. The message arrives at the receiver either once or not at all.

 QoS 1: This QoS level ensures that the message delivery between the publisher and

server and then between the server and subscribers occurs at least once. In PUBLISH and

PUBACK packets, a packet identifier is included in the variable header. If the message is

not acknowledged by a PUBACK packet, it is sent again. This level guarantees “at least

once” delivery.

 QoS 2: This is the highest QoS level, used when neither loss nor duplication of messages

is acceptable. The packet contains an optional variable header with a packet identifier.

The first step isdone through the PUBLISH/PUBREC packet pair, and the second

isachieved with the PUBREL/PUBCOMP packet pair. This level provides a “guaranteed

service” known as “exactly once” delivery, with no consideration for the number of

retries as long as the message is delivered once.

 INTERNET OF THINGS [18EC64]

BGS INSTITUTE OF TECHNOLOGY Page 29

Figure: MQTT QoS Flow

 Differences between CoAP and MQTT

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 1

MODULE-4

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 2

CHAPTER-1

DATA ANALYTICS FOR IOT

 In the world of IoT, the creation of massive amounts of data from sensors is common and one of

the biggest challenges—not only from a transport perspective but also from a data management

standpoint.

Before diving deeper into data analytics, it is important to define a few key concepts related to

data. Depending on how data is categorized, various data analytics tools and processing methods

can be applied.

Structured Versus Unstructured Data

Structured data and unstructured data are important classifications as they typically require

different toolsets from a data analytics perspective.

Figure: Comparison between structured and unstructured Data

 Structured data means that the data follows a model or schema that defines how the data

is represented or organized, meaning it fits well with a traditional relational database

management system (RDBMS).

 Structured data can be found in most computing systems and includes everything from

banking transaction and invoices to computer log files and router configurations.

 Unstructured data lacks a logical schema for understanding and decoding the data

through traditional programming means.

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 3

Data in Motion Versus Data at Rest

Data in IoT networks is either in transit (“data inmotion”) or being held or stored (“data at rest”).

From an IoT perspective, the data from smart objects is considered data in motion as it passes

through the network en route to its final destination. This is often processed at the edge, using

fog computing.

When data arrives at the data center, it is possible to process it in real-time, just like at the edge,

while it is still in motion.

Data at rest in IoT networks can be typically found in IoT brokers or in some sort of storage

array at the data center. The best known of these tools is Hadoop.

IoT Data Analytics Overview

The true importance of IoT data from smart objects is realized only when the analysis of the data

leads to actionable business intelligence and in-sights.

Figure: Types of data analysis results

 Descriptive: Descriptive data analysis tells you what is happening, either now or in the

past. For example, a thermometer in a truck engine reports temperature values every

second.

 Diagnostic: When you are interested in the “why,” diagnostic data analysis can provide

the answer. Continuing with the example of the temperature sensor in the truck engine,

you might wonder why the truck engine failed. Diagnostic analysis might show that the

temperature of the engine was too high, and the engine overheated.

 Predictive: Predictive analysis aims to foretell problems or issues before they occur. For

example, with historical values of temperatures for the truck engine, predictive analysis

could provide an estimate on the remaining life of certain components in the engine.

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 4

 Prescriptive: Prescriptive analysis goes a step beyond predictive and recommends

solutions for upcoming problems. A prescriptive analysis of the temperature data from a

truck engine might calculate various alternatives to cost-effectively maintain our truck.

Figure: Application of value and complexity factors to the types of data analysis

IoT Data Analytics Challenges

As IoT has grown and evolved, it has become clear that traditional data analytics solutions were

not always adequate.

IoT data places two specific challenges on a relational database

 Scaling problems: Due to the large number of smart objects in most IoT networks that

continually send data, relational databases can grow in-credibly large very quickly.

 Volatility of data: With relational databases, it is critical that the schema be designed

correctly from the beginning. Changing it later can slow or stop the database from

operating.

MACHINE LEARNING

Machine learning, deep learning, neural networks and convolutional networks

are words you have probably heard in relation to big data and IoT. ML is indeed central to IoT.

Machine Learning Overview

Machine learning is, in fact, part of a larger set of technologies commonly grouped under the

term artificial intelligence (AI).

AI includes any technology that allows a computing system to mimic human intelligence using

any technique, from very advanced logic to basic “if-then-else” decision loops.

ML is a vast field but can be simply divided in two main categor-ies: supervised and

unsupervised learning.

 Supervised Learning

In supervised learning, the machine is trained with input for which there is a known

correct answer.

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 5

 With supervised learning techniques, hundreds or thousands of images are fed

into the machine, and each image is labeled. This is called the training set.

 Each new image is compared to the set of known “good images,” and a deviation

is calculated to determine how different the new image is from the average human

image. This process is called classification.

 After training, the machine should be able to recognize human shapes. Before real

field deployments, the machine is usually tested with un-labeled pictures—this is

called the validation or the test set, depending on the ML system used—to verify

that the recognition level is at acceptable thresholds. If the machine does not reach

the level of success expected, more training is needed.

 Unsupervised Learning

 In some cases, supervised learning is not the best method for a machine to help

with a human decision.

 For example grouping of engines by the sound they make at a given temperature.

 Grouping the engines this way can quickly reveal several types of engines that all

belong to the same category (for example, small engine of chainsaw type, medium

engine of lawnmower type). All engines of the same type produce sounds and

temperatures in the same range as the other members of the same group.

 There will occasionally be an engine in the group that displays unusual

characteristics (slightly out of expected temperature or sound range). This is the

engine that you send for manual evaluation. The computing process associated

with this determination is called unsupervised learning/

 This type of learning is unsupervised because there is not a “good” or “bad”

answer known in advance. It is the variation from a group behavior that al-lows

the computer to learn that something is different.

Neural Networks

 Processing multiple dimensions requires a lot of computing power. It is also difficult to

determine what parameters to input and what combined variations should raise red flags.

 Neural networks are ML methods that mimic the way the human brain works.

 The information goes through different algorithms (called units), each of which is in

charge of processing an aspect of the information. The resulting value of one unit

computation can be used directly or fed into another unit for further processing to occur.

 The great efficiency of neural networks is that each unit processes a simple test, and

therefore computation is quite fast.

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 6

For ex-ample, a neural network processing human image

recognition may have two units in a first layer that

determines whether the image has straight lines and sharp

angles—because vehicles commonly have straight lines and

sharp angles, and human figures do not. If the image passes

the first layer successfully (because there are no or only a

small percentage of sharp angles and straight lines), a

second layer may look for different features (presence of

face, arms, and so on), and then a third layer might compare

the image to images of various animals and conclude that

the shape is a human (or not). The great efficiency of neural

networks is that each unit processes a simple test, and

therefore computation is quite fast. This model is

demonstrated in Figure

Machine Learning and Getting Intelligence from Big Data

ML operations into two broad subgroups

 Local learning: In this group, data is collected and processed locally, either in the sensor

itself (the edge node) or in the gateway (the fog node).

 Remote learning: In this group, data is collected and sent to a central computing unit

(typically the data center in a specific location or in the cloud), where it is processed.

The common applications of ML for IoT revolve around four major domains

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 7

 Monitoring: Smart objects monitor the environment where they operate. Data is

processed to better understand the conditions of operations. These conditions can refer to

external factors, such as air temperature, humidity, or presence of carbon dioxide in a

mine, or to operational internal factors, such as the pressure of a pump, the viscosity of

oil flowing in a pipe, and so on. ML can be used with monitoring to detect early fail-ure

conditions or to better evaluate the environment.

 Behavior control: Monitoring commonly works in conjunction withbehavior control.

When a given set of parameters reach a target threshold defined in advance (that is,

supervised) or learned dynamically through deviation from mean values (that is,

unsupervised) monitoring functions generate an alarm.

 Operations optimization: Behavior control typically aims at taking corrective actions

based on thresholds. However, analyzing data can also lead to changes that improve the

overall process. Behavior control results in different machine actions. The objective is not

merely to pilot the operations but to improve the efficiency and the result of the

operations.

 Self-healing, self-optimizing: A fast-developing aspect of deep learning is the closed

loop. ML-based monitoring triggers changes in machine behavior and operations

optimizations. The ML engine can be programmed to dynamically monitor and combine

new parameters and automatically deduce and implement new optimizations when the

results demonstrate a possible gain. The system becomes self-learning and self-

optimizing.

BIG DATA ANALTICS TOOLS AND TECHNLOGY

Big data analytics can consist of many different software pieces that together collect,

store, manipulate and analyze all different data types. Generally, the in-dustry looks to

the “three Vs” to categorize big data.

 Velocity: Velocity refers to how quickly data is being collected andanalyzed.

Hadoop Distributed File System is designed to ingest and pro-cess data very

quickly.

 Variety: Variety refers to different types of data. Often you see data categorized

as structured, semi-structured, or unstructured. Different database technologies

may only be capable of accepting one of these types. Hadoop is able to collect and

store all three types.

 Volume: Volume refers to the scale of the data. Typically, this is measured from

gigabytes on the very low end to petabytes or even exa-bytes of data on the other

extreme. It is common to see clusters of servers that consist of dozens, hundreds,

or even thousands of nodes for some large deployments.

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 8

The characteristics of big data can be defined by the sources and types of data.

First is machine data, which is generated by IoT devices and is typically

unstructured data. Second is transactional data, which is from sources that

produce data from transactions on these systems, and, have high volume and

structured. Third is social data sources, which are typically high volume and

structured. Fourth is enterprise data, which is data that is lower in volume and

very structured. Hence big data consists of data from all these separate sources.

MASSIVELY PARALLEL PROCESSING DATABASES

Massively parallel processing (MPP) databases were built on the concept of the relational

data warehouses but are designed to be much faster, to be efficient, and to support

reduced query times.

MPPs are sometimes referred to as analytic databases because they are designed to allow

for fast query processing and often have built-in analytic functions.

Figure: MPP shared nothing architecture

In the figure, we see it typically contains a single master node that is responsible for the

coordination of all the data storage and processing across the cluster. It operates in a

“shared-nothing” fashion, with each node containing local processing, memory, and

storage and operating in-dependently. Data storage is optimized across the nodes in a

structured SQL-like format that allows data analysts to work with the data using common

SQL tools and applications.

NoSQL Databases

NoSQL (“not only SQL”) is a class of databases that support semi-structured and unstructured

data, in addition to the structured data handled by data warehouses and MPPs. NoSQL is not a

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 9

specific database techno-logy; rather, it is an umbrella term that encompasses several different

types of databases, including the following.

 Document stores: This type of database stores semi-structured data, such as XML or

JSON. Document stores generally have query engines and indexing features that allow

for many optimized queries.

 Key-value stores: This type of database stores associative arrays where a key is paired

with an associated value. These databases are easy to build and easy to scale.

 Wide-column stores: This type of database stores similar to a key-value store, but the

formatting of the values can vary from row to row, even in the same table.

 Graph stores: This type of database is organized based on the relationships between

elements. Graph stores are commonly used for social media or natural language

processing, where the connections between data are very relevant.

HADOOP

Hadoop was originally developed as a result of projects at Google and Yahoo!, and the original

intent for Hadoop was to index millions of websites and quickly return search results for open

source search engines. Initially, the project had two key elements

 Hadoop Distributed File System (HDFS): A system for storingdata across multiple

nodes

 MapReduce: A distributed processing engine that splits a large taskinto smaller ones that

can be run in parallel

For HDFS, this capability is handled by specialized nodes in the cluster, including

NameNodes and DataNodes.

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 10

 NameNodes: These are a critical piece in data adds, moves, deletes, and reads on

HDFS. They coordinate where the data is stored, and main-tain a map of where

each block of data is stored and where it is replicated. All interaction with HDFS

is coordinated through the primary (active) NameNode, with a secondary

(standby) NameNode notified of the changes in the event of a failure of the

primary. The NameNode takes write re-quests from clients and distributes those

files across the available nodes in configurable block sizes, usually 64 MB or 128

MB blocks. The Name Node is also responsible for instructing the DataNodes

where replication should occur.

 DataNodes: These are the servers where the data is stored at the direction of the

NameNode. It is common to have many DataNodes in a Hadoop cluster to store

the data. Data blocks are distributed across several nodes and often are replicated

three, four, or more times across nodes for redundancy. Once data is written to

one of the DataNodes, the DataNode selects two (or more) additional nodes,

based on replication policies, to ensure data redundancy across the cluster. Disk

redundancy techniques such as Redundant Array of Independent Disks (RAID)

are generally not used for HDFS because the NameNodes and DataNodes

coordinate block-level redundancy with this replication technique.

EDGE STREAMING ANALYTICS

A major area of evolution for IT in the past few years has been the transition to cloud services

The key values of edge streaming analytics include the following:

 Reducing data at the edge: The aggregate data generated by IoT devices is generally in

proportion to the number of devices. The scale of these devices is likely to be huge, and

so is the quantity of data they generate.

 Analysis and response at the edge: Some data is useful only at the edge (such as a

factory control feedback system). In cases such as this, the data is best analyzed and acted

upon where it is generated.

 Time sensitivity: When timely response to data is required, passing data to the cloud for

future processing results in unacceptable latency.

EDGE ANALYTICS CORE FUNCTIONS

Streaming analytics at the edge can be broken down into three simple stages

 Raw input data: This is the raw data coming from the sensors into the analytics

processing unit

 Analytics processing unit (APU): The APU filters and combines data streams (or

separates the streams, as necessary), organizes them by time windows, and performs

various analytical functions.

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 11

 Output streams: The data that is output is organized into insightful streams and is used

to influence the behavior of smart objects, and passed on for storage and further

processing in the cloud.

Figure: illustrates the stages of data processing in an edge APU

In order to perform analysis in real-time, the APU needs to perform the following

functions

 Filter: The streaming data generated by IoT endpoints is likely to be very large,

and most of it is irrelevant. For example, a sensor may simply poll on a regular

basis to confirm that it is still reachable.

 Transform: In the data warehousing world, Extract, Transform, and Load (ETL)

operations are used to manipulate the data structure into a form that can be used

for other purposes.

 Time: As the real-time streaming data flows, a timing context needs to be

established. This could be to correlated average temperature readings from

sensors on a minute-by-minute basis.

Figure: Corelating data stream with historical data

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 12

 Correlate: Streaming data analytics becomes most useful when multiple data streams are

combined from different types of sensors. For example in hospital, several vital signs are

measured for patients including body temperatures, blood pressure heart rate and

respiratory rate and all the data are used to get the clear picture of patients health.

 Match patterns: Once the data streams are properly cleaned, trans-formed, and

correlated with other live streams as well as historical datasets, pattern matching

operations are used to gain deeper insights to the data. For example, If an unexpected

event arises, such as a sudden change in heart rate or respiration, the pattern matching

operator recognizes this as out of the ordinary and can take certain actions, such as

generating an alarm to the nursing staff.

 Improve business intelligence: Ultimately, the value of edge analytics is in the

improvements to business intelligence that were not previously available. For example

conducting edge analytics on patients in a hospital allows staff to respond more quickly

to the patient’s changing needs and also reduces the volume of data sent to the cloud.

DISTRIBUTED ANALYTICS SYSTEMS

Depending on the application and network architecture, analytics can happen at any point

throughout the IoT system. Streaming analytics maybe performed directly at the edge, in the fog,

or in the cloud data center.

Figure: Distributed Analytics throughout the IoT system

The above figure shows an example of an oil drilling company that is measuring both pressure

and temperature on an oil rig. While there may be some value in doing analytics directly on the

edge, in this example, the sensors communicate via MQTT through a message broker to the fog

analytics node, allowing a broader data set. The fog node is located on the same oil rig and

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 13

performs streaming analytics from several edge devices, giving it better insights due to the

expanded data set.

NETWORK ANALYTICS

Another form of analytics that is extremely important in managing IoT systems is network-based

analytics. Network analytics has the power to analyze details of communications patterns made

by protocols and correlate this across the network.

In addition to other network management services, are as follows:

 Network traffic monitoring and profiling: Flow collection from the network layer

provides global and distributed near-real-time monitoring capabilities. IPv4 and IPv6

network wide traffic volume and pattern analysis helps administrators proactively detect

problems and quickly troubleshoot and resolve problems when they occur.

 Application traffic monitoring and profiling: Monitoring and profiling can be used to

gain a detailed time-based view of IoT access ser-vices, such as the application-layer

protocols, including MQTT, CoAP, andDNP3, as well as the associated applications that

are being used over the network.

 Capacity planning: Flow analytics can be used to track and anticipate IoT traffic growth

and help in the planning of upgrades when deploying new locations or services by

analyzing captured data over a long period of time.

 Security analysis: Because most IoT devices typically generate a low volume of traffic

and always send their data to the same server(s), any change in network traffic behavior

may indicate a cyber security event, such as a denial of service (DoS) attack.

FLEXIBLE NETFLOW ARCHITECTURE

Flexible NetFlow (FNF) and IETF IPFIX (RFC 5101, RFC 5102) are ex-amples of protocols that

are widely used for networks. FNF is a flow technology developed by Cisco Systems that is

widely deployed all over the world. Key advantages of FNF are as follows:

 Flexibility, scalability, and aggregation of flow data

 Ability to monitor a wide range of packet information and produce new information

about network behavior

 Enhanced network anomaly and security detection

 User-configurable flow information for performing customized traffic identification and

ability to focus and monitor specific network behavior

 Convergence of multiple accounting technologies into one accounting mechanism

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 14

FNF Components

Figure:Flexible netflow overview

 FNF Flow Monitor (NetFlow cache): The FNF Flow Monitor de-scribes the NetFlow

cache or information stored in the cache. The Flow Monitor contains the flow record

definitions with key fields (used to create a flow, unique per flow record: match

statement) and non-key fields(collected with the flow as attributes or characteristics of a

flow) withinthe cache. Also, part of the Flow Monitor is the Flow Exporter, which con-

tains information about the export of NetFlow information, including the destination

address of the NetFlow collector. The Flow Monitor includes various cache

characteristics, including timers for exporting, the size of the cache, and, if required, the

packet sampling rate.

 FNF flow record: A flow record is a set of key and non-key NetFlowfield values used to

characterize flows in the NetFlow cache. Flow records may be predefined for ease of use

or customized and user defined. A typical predefined record aggregates flow data and

allows users to target common applications for NetFlow. User-defined records allow

selections of specific key or non-key fields in the flow record. The user-defined field is

the key to Flexible NetFlow, allowing a wide range of information to be characterized

and exported by NetFlow. It is expected that different net-work management applications

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 15

will support specific user-defined and predefined flow records based on what they are

monitoring (for example,security detection, traffic analysis, capacity planning).

 FNF Exporter: There are two primary methods for accessing Net-Flow data: Using the

show commands at the command-line interface(CLI), and using an application reporting

tool.. The Flexible NetFlow Exporter allows the user to define where the export can be

sent, the type of transport for the export, and properties for the export. Multiple exporters

can be configured per Flow Monitor.

 Flow export timers: Timers indicate how often flows should be ex-ported to the

collection and reporting server.

 NetFlow export format: This simply indicates the type of flow re-porting format.

 NetFlow server for collection and reporting: This is the destination of the flow export.

It is often done with an analytics tool that looks for anomalies in the traffic patterns.

Flexible NetFlow in Multiservice IoT Networks

In the context of multiservice IoT networks, it is recommended that FNF be configured on the

routers that aggregate connections from the lastmile’s routers. Flow analysis at the gateway is

not possible with all IoT systems. Some of the challenges with deploying flow analytics tools in

an IoT network include the following

 The distributed nature of fog and edge computing may mean that traffic flows are

processed in places that might not support flow analytics, and visibility is thus lost.

 IPv4 and IPv6 native interfaces sometimes need to inspect inside VPN tunnels, which

may impact the router’s performance.

 Additional network management traffic is generated by FNF reporting devices. The

added cost of increasing bandwidth thus needs to be re-viewed, especially if the backhaul

network uses cellular or satellite communications.

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 16

CHAPTER-2

SECURING IOT

A BRIEF HISTORY OF OT SECURITY

 More than in most other sectors, cyber security incidents in industrial environments can

result in physical consequences that can cause threats to human lives as well as damage

to equipment, infrastructure, and the environment.

 Cyber security incidents have caused majority damage on the OT, For example, Stuxnet

is thought to have been deployed on USB memory sticks up to two years before it was

finally identified and discovered

 In addition to physical damage, operational interruptions have occurred in OT

environments due to cyber security incidents

 For example, in 2000,the sewage control system of Maroochy Shire in Queensland,

Australia, was accessed remotely, and it released 800,000 liters of sewage into the

surrounding waterways.

 As technology has advanced, tools have been created to make attacks much easier to

carry out.

 Many of the legacy protocols used in IoT environments are many decades old, and there

was no thought of security when they were first developed.

 An important advantage for operators is the fact that they are far more familiar with their

environment and have a better understanding of their processes, and can thus leverage

multiple technologies and capabilities to defend their networks against attack.

 OT-specific communication systems have typically been standalone and physically

isolated from the traditional IT enterprise networks in the same companies

 The isolation between industrial networks and the traditional IT business networks has

been referred to as an “air gap,” suggesting that there are no links between the two.

 Broadly speaking, there is a varying amount of interconnection between OT and IT

network environments, and many interdependencies between the two influence the level

of interconnection.

 In addition to the policies, regulations, and governance imposed by the different

industrial environments, there is also a certain amount of end-user preference and

deployment-specific design that determines the degree of isolation between IT and OT

environments.

 Evolution of ever-increasing IT technologies in the OT space comes with the benefits of

increased accessibility and a larger base of skilled operators than with the nonstandard

and proprietary communication methods in traditional industrial environments.

 The accessibility and scale makes security a major concern, particularly because many

systems and devices in the operational domain were never envisioned to run on a shared,

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 17

open standards–based infrastructure, and they were not designed and developed with high

levels of built-in security capabilities.

 Projects in industrial environments are often capital intensive, with an expected life span

that can be measured in decades. The deployed OT systems often have slower

development and upgrade cycles and can quickly become out of sync with traditional IT

network environments.

 The proprietary nature of OT systems meant that threats from the outside world were

unlikely to occur and were rarely addressed. There has, however, been a growing trend

whereby OT system vulnerabilities have been exposed and reported.

COMMON CHALLENGES IN OT SECURITY

The security challenges faced in IoT are by no means new and are not limited to specific

industrial environments. Some of the common challenges faced in IoT are explained below.

 Erosion of Network Architecture

Two of the major challenges in securing industrial environments have been initial design

and ongoing maintenance. The initial design challenges arose from the concept that

networks were safe due to physical separation from the enterprise with minimal or no

connectivity to the out-side world, and the assumption that attackers lacked sufficient

knowledge to carry out security attacks. The challenge, and the biggest threat to network

security, is standards and best practices either being misunderstood or the network being

poorly maintained. In many industries, the control systems consist of packages, skids, or

components that are self-contained and may be integrated as semi-autonomous portions

of the network. These packages may not be as fully or tightly integrated into the overall

control system, network management tools, or security applications, resulting in potential

risk.

 Pervasive Legacy Systems

Due to the static nature and long lifecycles of equipment in industrial environments,

many operational systems may be deemed legacy systems. Beyond the endpoints, the

communication infrastructure and shared centralized compute resources are often not

built to comply with modern standards

 Insecure Operational Protocols

Many industrial control protocols, particularly those that are serial based, were designed

without inherent strong security requirements. Common industrial protocols and their

respective security concerns are discussed below

 Modbus: Modbus is commonly found in many industries, such as utilities and

manufacturing environments, and has multiple variants. The security challenges

that have existed with Modbus are not unusual. Authentication of communicating

endpoints was not a default operation because it would allow an inappropriate

source to send improper commands to the recipient

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 18

 DNP3 (Distributed Network Protocol): DNP3 is found in multiple deployment

scenarios and industries. It is common in utilities and is also found in discrete and

continuous process systems. There is an explicit “secure” version of DNP3, but

there also remain many insecure implementations of DNP3 as well.

 ICCP (Inter-Control Center Communications Protocol): ICCP is a common

control protocol in utilities across North America that is frequently used to

communicate between utilities. ICCP was designed from inception to work across

a WAN. Initial versions of ICCP had several significant gaps in the area of

security such as no authentication for communication and encryption across the

protocol was not enabled.

 OPC (OLE for Process Control): OPC is based on the Microsoft

interoperability methodology Object Linking and Embedding (OLE). This is an

example where an IT standard used within the IT domain and personal computers

has been leveraged for use as a control protocol across an industrial network. Of

particular concern with OPC is the dependence on the Remote Procedure Call

(RPC) protocol, which creates two classes of exposure- vulnerabilities and level

of risk.

HOW IT AND OT SECURITY PRACTICES AND SYSTEMS VARY

The differences between an enterprise IT environment and an industrial-focused OT deployment

are important to understand because they have a direct impact on the security practice applied to

them.

 The Purdue Model for Control Hierarchy: The Purdue Model for Control Hierarchy is

the most widely used framework across industrial environments globally and is used in

manufacturing, oil and gas, and many other industries.

Figure: The Logical Framework Based on the Purdue Model for Control Hierarchy

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 19

This model identifies levels of operations and defines each level. The enterprise and operational

domains are separated into different zones and kept in strict isolation via an industrial

demilitarized zone (DMZ):

Level 5: Enterprise network: Corporate-level applications such as Enterprise Resource

Planning (ERP), Customer Relationship Management (CRM), document management, and

services such as Internet access and VPN entry from the outside world exist at this level.

Level 4: Business planning and logistics network: The IT services exist at this level and may

include scheduling systems, material flow applications, optimization and planning systems, and

local IT services such as phone, email, printing, and security monitoring.

DMZ:The DMZ provides a buffer zone where services and data can be shared between the

operational and enterprise zones. It also allows for easy segmentation of organizational control.

By default, no traffic should traverse the DMZ; everything should originate from or terminate on

this area. DMZ resides between the IT and OT levels. Clearly, to protect the lower industrial

layers, security technologies such as firewalls, proxy servers, and IPSs should be used to en-sure

that only authorized connections from trusted sources on expected ports are being used

Level 3: Operations and control: This level includes the functions involved in managing the

workflows to produce the desired end products and for monitoring and controlling the entire

operational system. This could include production scheduling, reliability assurance, system wide

control optimization, security management, network management, and potentially other required

IT services, such as DHCP, DNS, and timing.

Level 2: Supervisory control: This level includes zone control rooms, controller status, control

system network/application administration, and other control-related applications, such as

human-machine interface (HMI) and historian.

Level 1: Basic control: At this level, controllers and IEDs, dedicated HMIs, and other

applications may talk to each other to run part or all of the control function.

Level 0: Process: This is where devices such as sensors and actuators and machines such as

drives, motors, and robots communicate with controllers or IEDs.

FORMAL RISK ANALYSIS STRUCTURES: OCTAVE AND FAIR

OCTAVE (Operationally Critical Threat, Asset and Vulnerability Evaluation) is a standard for risk

definition from the Software Engineering Institute at Carnegie Mellon University

FAIR (Factor Analysis of Information Risk) is a standard for risk definition from The Open Group

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 20

 OCTAVE

OCTAVE has undergone multiple iterations. OCTAVE Allegro is a lightweight and less

burdensome process to implement. Allegro assumes that a robust security team is not on

standby or immediately at the ready to initiate a comprehensive security review.

Figure: OCTAVE Allegro steps and phases

 The first step of the OCTAVE Allegro methodology is to establish a risk measurement criterion.

OCTAVE provides a fairly simple means of doing this with an emphasis on impact, value, and

measurement.

 The second step is to develop an information asset profile. This profile is populated with assets, a

prioritization of assets, attributes associated with each asset, including owners, custodians,

people, explicit security requirements, and technology assets.

 The third step is to identify information asset containers. Roughly speaking, this is the range of

transports and possible locations where the in-formation might reside. This references the

compute elements and the networks by which they communicate. However, it can also mean

physical manifestations such as hard copy documents or even the people who know the

information.

 The fourth step is to identify areas of concern. At this stage, the analyst looks to risk profiles and

delves into the previously mentioned risk analysis. It is no longer just facts, but there is also an

element of creativity that can factor into the evaluation. History both within and outside the

organization can contribute. References to similar operational use cases and incidents of security

failures are reasonable associations.

 Closely related is the fifth step, where threat scenarios are identified. Threats are broadly (and

properly) identified as potential undesirable events. It is at this point that an explicit

identification of actors, motives, and outcomes occurs.

INTERNET OF THINGS 18EC64

BGS INSTITUTE OF TECHNOLOGY Page 21

 At the sixth step risks are identified. Within OCTAVE, risk is the possibility of an undesired

outcome. This is extended to focus on how the organization is impacted.

 The seventh step is risk analysis, with the effort placed on qualitative evaluation of the impacts

of the risk.

 Finally, mitigation is applied at the eighth step. There are three outputs or decisions to be taken

at this stage. One may be to accept a risk and do nothing, other than document the situation,

potential outcomes, and reasons for accepting the risk. The second is to mitigate the risk with

whatever control effort is required. The final possible action is to defer a decision, meaning risk

is neither accepted nor mitigated.

 FAIR

 FAIR places emphasis on both unambiguous definitions and the idea that risk and

associated attributes are measurable.

 FAIR has a definition of risk as the probable frequency and probable magnitude

of loss. With this definition, a clear hierarchy of sub-elements emerges, with one

side of the taxonomy focused on frequency and the other on magnitude.

 Loss even frequency is the result of a threat agent acting on an asset with a

resulting loss to the organization. This happens with a given frequency called the

threat event frequency (TEF), in which a specified time window becomes a

probability

 The other side of the risk taxonomy is the probable loss magnitude (PLM), which

begins to quantify the impacts, with the emphasis again being on measurable

metrics.

 FAIR defines six forms of loss, four of them externally focused and two internally

focused. Of particular value for operational teams are productivity and

replacement loss. Response loss is also reasonably measured, with fines and

judgments easy to measure but difficult to predict. Finally, competitive advantage

and reputation are the least measurable.

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 1

INTRODUCTION TO ARDUINO

Arduino is a tiny computer that can be programmed to read information from the world around

us and to send commands to outside world.

Arduino can be connected to several devices and electrical circuits.

The brain of the Arduino uno is an ATmega328p (microcontroller) chip where the program is

stored. Instruction to the microcontroller are given by using Arduino programming

language(c,c++). Arduino software (IDE-integrated development environment) is used for

development.

Why Arduino?

 Arduino is an open source product, software/hardware which is accessible and flexible to

customers

 Arduino is flexible because it has variety of digital and analog pins, SPI and PWM

outputs.

 Arduino is easy to use, connected to a computer through a USB and communicates using

serial protocol.

 Inexpensive, around 500rupees per board with free editable software.

 Arduino has growing online community where lots of source code is available for use,

share and post examples for others to use.

 Arduino is cross platform, which can work on windows, Mac or Linux platforms.

 Arduino follows simple, clear programming environment as C language.

Which Arduino?

Hundreds of Arduino boards are available in the market. Among which the popular Arduino Uno

is used in almost 99% of projects.

Some of the boards from Arduino family are

 Arduino Mega has more memory and pins with ATmega2560 chip. This is useful where

Arduino Uno is not sufficient for the project.

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 2

 Arduino Micro is a bit smaller with a chip ATmega32u4 that can act like a keyboard or

mouse which does its task with a USB. Its slim with downward pins which can be

plugged into a breadboard.

 The Arduino MKR1000 is a little like an Arduino Micro but has a more powerful 32 bit

ATSAM ARM chip and built in WiFi. This is useful in internet of things projects.

 Flora is an Arduino compatible from Adafruit which is round wearable which can be

sewed into clothing

EXPLORING ARDUINO UNO LEARNING BOARD

Figure: Arduino UNO Learning Board

 Microcontroller: the ATmega328p id the Arduino brain. Everything on the Arduino

board support this microcontroller.

 Digital pins: Arduino has 14 digital pins labeled from 0 to 13 that can act as inputs or

outputs.

 When set as inputs these pins can read voltage(HIGH, LOW). When set as

outputs these pins can apply voltages(5VHIGH, 0V LOW)

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 3

 PWM pins: these are digital pins marked with ~ (pins 11,10,9,6,5, and 3). Pulse width

modulation(PWM) pins allows to make digital pins output fake varying amounts of

voltage.

 TX and RX pins: Digital pins 0 and 1. The T stands for transmit and R for Receive.

Arduino uses these pins to communicate with the computer. These pins should be used in

case of shortage of pins for projects else t has to be avoided.

 LED attached to digital pin 13: This is useful for an easy debugging of the Arduino

sketches.

 TX and RX pins: these pins blink when there are information being sent between the

computer and the Arduino

 Analog Pins:the analog pins are labeled from A0 to A5and are most often used to read

analog sensors. They can read different amounts of voltage between 0 and 5V. these can

also be used as digital output/input pins like digital pins.

 Power Pins: The Arduino has 3.3V nd5V supply. The pin labeled as GND is the ground

pin.

 Reset Button: when this button is pressed the program that is currently running on

Arduino will start from beginning. There is a reset pin next to power pin. When a small

voltage is applied to this pin it will reset Arduino.

 Power ON LED: will be on when power is applied to the Arduino.

 USB jack: By connecting a cable to this jack program is uploaded.

 Power Jack: This jack is used to power up Arduino.

Things that Arduino Can Do

 Control LED

 Display a message in a display like an LCD display

 Control DC or Servo motors

 Read data from outside world

 Motion Sensor: allows detecting movement.

 Light Sensor: allows to measure the quantity of light in outside world.

 Humidity and temperature sensor: measures humidity and temperature.

 Ultrasonic sensor: allows to determine the distance to an object through sonar.

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 4

 Sheilds: an extension of the Arduino.

Sheilds are boards that will expand the functionalities of Arduino.

 INSTALLING THE SOFTWARE(ARDUINO IDE)

The Arduino Software (allows to write programs and upload them to board. In the Arduino

Software page you will find two options

1 Online IDE (Arduino Web Editor) :It will allow to save sketches in the cloud, having

them available from any device and backed up

2 Offline should use the latest version of the desktop IDE

Install the Arduino Desktop IDE accordingly to operating system

 Windows

 Mac OS X

 Linux

 Portable IDE (Windows and Linux)

Figure: Arduino IDE

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 5

The toolbar buttons and functions of each button are as shown in the table.

Verify/Compile Checks the code for errors

Stop Stop the serial monitor or un-highlight other buttons

New Creates a new blank sketch. Enter a name and location for your sketch

Open Shows a list of sketches in your sketchbook

Upload Uploads the current sketch to the Arduino. You need to make sure that you have the

current board and port selected(in tools menu) before uploading

Serial monitor Display serial data being sent from Arduino

Verify/compile Button is used to check that your code is correct before you upload it to your Arduino

Stop button Will stop the serial monitor from operating. If you need to obtain a snapshot of the

serial data to be examined.

Table: Toolbar options in Arduino IDE

Technical Specifications of Arduino Uno is listed in the below table

Microcontroller n Arduino UNo ATmega328p

Operating Voltage 5V

Input Voltage(recommended) 7-12V

Input voltage(limit) 6-20V

Digital I/O pins 14(of which 6 provide PWM outputs)

PWM Digital I/O pins 6

Analog input pins 6

DC Current pr I/O pin 20mA

DC Current for 3.3V pin 50mA

Flash Memory 32KB(ATmega328p) of which 0.5 KB used

by bootloader

SRAM 2KB(ATmega328p)

EEPROM 1KB(ATmega328p)

Clock Speed 16MHz

Table: Technical Specifications of Arduino UNO

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 6

Connecting Arduino Uno Learning Board

 If you want to program your Arduino Uno while offline you need to install the Arduino

Desktop IDE

 Connect your Uno board with an A B USB cable sometimes this cable is called a USB

printer cable

 If you used the Installer, Windows from XP up to 10 will install drivers automatically as

soon as you connect your board.

 You'll need to select the entry in the Tools Board menu that corresponds to your Arduino

or Genuino board as shown in the figure

Figure: Selecting the right board

 Select the serial device of the board from the Tools Serial Port menu This is likely to be

COM 3 or higher (COM 1 and COM 2 are usually reserved for hardware serial ports) To

find out, you can disconnect your board and re open the menu the entry that disappears

should be the Arduino or Genuino board. Reconnect the board and select that serial port

as shown n figure.

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 7

Figure: showing the layout of Arduino IDE selecting right port

 Open your first sketch

 Open the LED blink example sketch: File > Examples>01.Basics > Blink

 Upload the program

 Now, simply click the " button in the environment Wait a few seconds you should see the

RX and TX leds on the board flashing If the upload is successful, the message "Done

uploading will appear in the status bar

 A few seconds after the upload finishes, you should see the pin 13 (LED on the board

start to blink

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 8

FUNDAMENTALS OF ARDUINO PROGRAMMING

The basic structure of Arduino programming with respect to usage of variables, constants,

control flow statements and predefined functions to read the analog and digital inputs is as

follows

Structure

The structure contains two parts

void setup() //Preparation function used to declare variables

 // First function that runs only one in the program

{

 Statement(s); //used to setup pins for serial communication

}

void loop() // execution block where instructions are executed

{ repeatedly

 Statement(s); //this is the core of the Arduino program

 // Functions include reading inputs triggering outputs etc

}

void setup() void setup()

{

 pinMode(pin,INPUT); //’pin’ configured as input

}

void loop() void loop() //after calling setup(),loop() functions does its task

{

 digitalWrite(pin,HIGH) ; //sets ‘pin’ ON

 delay(10000); // pause for 10000 milli seconds

 digitalWrite(pin, LOW) //sets ‘pin’ OFF

 delay(10000); // pause for 10000 milli seconds

}

Functions A function is a piece of code that has a name and a set of statements executed

when function is called. Functions are declared by its type followed with

name of function.

Syntax:

type functionName(parameters)

{

 Statement(s);

}

Example:

int delayvar()

{

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 9

 int var; // create temporary variable var

 var=analogRead(potent); // read from potentiometer

 var=var/4; //convert the value of variable var

 return var;

}

{} curly braces They define beginning and end of function blocks, unbalanced braces lead to

error

Semicolon It is used to end a statement and separate elements of a program.

/*….*/ block

comments

Multiline comments begin with /* with a description of blocks and ends with

*/

// line comments Single line comment begins with // and ends with next instruction followed

Variables A variable is a way of storing value for later use in the program.

A variable type maybe int,long,float etc

A variable can be defined and assigned an initial value

A global variable is declared at the beginning of the program before setup()

and can be used in any part of the program.

A local variable is defined inside the function in which it is declared

Example:

int var; // var is a global variable and can be used by all functios

void setup()

{

}

void loop()

{

for(int x=0;x<5;)

{

x++; // variable x can be used within the loop

}

float y; // variable y is can be used only in loop function

}

Data Types

Data Type Syntax Range

Byte byte x=100; 0-255

Int int y=200; 32767 to -32768

Long long var = 8000; 2147483647 to -2147483648

Float float x= 3.14; 3.4028235E+38 to -3.4028235E+38

Arrays int myarray

[]={10,20,30}

Size depends on the data type

associated with declaration

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 10

Operators

Operators Synatx and usage

Arithmetic operators

(+,-,/,*)

x=x+5;

y=y-6;

z=z*2;

p=p/q;

Assignment operators

(=,++,--,+=,*=,/=)

x++;// same as x=x+1

x+=y;//same as x=x+y

x-=y;//same as x=x-y

x*=y;//same as x=x*y

x/=y;//same as x=x/y

Comparison operators

(==,!=,<,>,<=,<=)

x==y //x is equal to y

x!=y // x is not equal to y

x<y // x is less than y

x!-y //x is no equal to y

Logical operators

(&&,||,!)

x>2 && x<5 // Evaluates to true only if both

expression are true

x>2||y>2 // Evaluates to true only if any

one expression are true

!x>2 // true if only expression is false

Constants

Constants Usage

TRUE/FALSE Boolean constants true=1

an false=0 defined in

logic levels

if(b==TRUE)

 {

//do something

}

INPUT/

OUTPUT

Used with pinMode ()

function to define levels.

pinMode(13,OUTPUT)

HIGH/LOW Used to define pin levels

HIGH1 ON, 5 volts

LOW0, OFF, 0 volts

Digital Write(13,HIGH)

Flow Control Statements

if If(some_variable==value)

{

Statement(s); //Evaluated only if comparisons results in a true value

}

if..else if(input==HIGH)

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 11

{

Statement(s); //Evaluated only if comparison results in a true value

}

Else

{

Statement(s); // Evaluated only if comparison results in a false value

}

for for(initialization;condition;expression)

{

Dosomething; //Evaluated till condition becomes false

}

for(int p=0;p<5;p++) //declares p, tests if less than 5, increments by 1

{

digitalWrite(13,HIGH); //sets pin 13 ON

delay(250); //pauses for ¼ second

digitalWrite(13,LOW); // sets pin 13 OFF

delay(250); //pause for ¼ second

}

while While loop executes until the expression inside parenthesis becomes false

while(some_variable??value)

{

 Statement(s); //Evaluated till comparison results in a false value

}

do….while Bottom evaluated loop, works same way as while loop but condition is tested

at the end of loop.

Do

{

Dosomething;

}while(somevalue);

Digital and Analog input output pins and their usage

Digital i/o Methods Usage

 pinMode(pin,mode) Used in setup() method to configure pin to

behave as INPUT/OUTPUT

pinMode(pin,INPUT) //pin set to INPUT

pinMode(pin,OUTPUT) //pin set to OUTPUT

DigitalRead(pin) Read value from a specified pin with result being

HIGH/LOW

val=digital Read(pin); //Val will be equal to

input pin

Example int x=13; //connect ‘x’ to 13

int p=7; //connect push button to pin 7

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 12

int val=(); //variable to store the read value

void setup()

{

pinMode(x, OUTPUT); //sets ‘x’ as OUTPUT

}

void loop()

{

val=digitalRead(p); //sets ‘value’ to 0

digitalWrite(x,val); //sets ‘x’ to button value

}

Analog i/o Methods Usage

 analogRead(pin) Reads value from a specified analog pin works

on pins 0-5

val=analogRead(pin); //’val’ equal to pin

analogWrite(pin,value) Writes an analog value using pulse width

modulation (PWM) to a pin marked PWM works

on pins 3,5,6,9,10

Example int x=10; //connect ‘x’ to pin 13

int p=0;

pin 7

int val; //variable for reading

void setup()

{

} // No setup is needed

Void loop()

{

Val=analogRead(p); //sets ‘value’ to 0

Val/=4;

analogWrite(x,val); //outputs PWM signal to ‘x’

}

time Methods Usage

 delay(ms) Pauses for amount of time specified in

milliseconds.

delay(1000); //waits for one second

millis() Returns the number of milliseconds since

Arduino is running

val=millis(); //’val’ will be equal to millis()

math Methods Usage

 min(x,y) Calculates minimum of two numbers

val=min(val,10); //sets ‘val’ to smaller than 10 or

equal to 10 but never gets above 10

max(x,y) val=max(val,10); //sets ‘val’to larger than 10 or

10

random Methods Usage

 random reed (value) Sets a value / seed as a starting point for function

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 13

random(min,max) Allows to return numbers within the range

specified by min and max values

Val=random(100,200); //sets ‘val’ to random

number between 100 to 200

Example Intr number; //variable to store random value

int x=10;

void setup()

{

randomseed (millis()); //set millis() as seed

number =random(200); //random number from

0-200

analogWrite(x,number); //outputs PWM signal

delay(500);

}

Serial Methods Usage

 Serial.begin(rate) Opens serial port and sets then baud rate for

serial data transmission

Void setup()

{

Serial.begin(9600); //sets default rate to 9600bps

}

Serial.println(data) Prints data to the serial port

Serial.println(value); //sends the ‘value’ to serial

monitor

 Differences between Analog, Digital and PWM pins

 In analog pins, possible states are between 0 to 1023. This allows the users to read sensor

values. For example, with a light sensor, if it is very dark the reading will be 1023, if it is very

bright the reading will be 0. If there is a brightness between dark and bright the reading will have

a value between 0 and 1023.

 In digital pins there are only two possible states, which are on or off. These can also be

referred as high or low, 1 or 0 and 5v or 0v. For example, if an LED is on, then its state is High

or 1 or 5v. If it is off, the values will be Low or 0 or 0v.

PWM pins are digital pins, so they output either 0 or 5v. however these pins can output “fake”

intermediate voltage values between 0 and 5v, because they can perform “pulse width

modulation”(PWM). PWM allows to “simulate” varying levels of power by oscillating the

output voltage o arduino.

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 14

INTRODUCTION TO RASPBERRY PI

The RaspberryPi is a series of credit card sized single board computers developed in the United

Kingdom by the RaspberryPi foundation to promote the teaching of basic computer science in

schools and developing countries.

The later models got popular and are used for various applications such as robotics. Several

generations of RaspberryPi are released. Some of the specifications of models are tabulated

below.

RaspberryPi Model A+ Model B Model B+ 2,Model B Model 3
Quick

Summary

Cheapest,

smallest

single board
computer

The original

RaspberryPi

More USB

and GPIO

that the
B.Ideal

choice for

schools

Most

advanced

Raspberry Pi

Newest with

wireless

connectivity

Chip Broadcom BCM 2835 Broadcom
BCM 2836

Broadcom
BCM2837

Processor ARMv6 single core ARMv7 quad

core

4xARM cortex-

A53

Processor

Speed

700MHz 900MHz 1.2GHz

Voltage and

Power draw

600mA @5V 650mA @5V

GPU Dual core video core IV Multimedia Co-Processor Broadcom Video

cone IV

Size 65x56mm 85x56mm

Memory 256MB
SDRAM @

400 MHz

512 MB SDRAM @400MHz 1GB SDRAM
@ 400MHz

1GB
LPDDR2(900MHz)

Storage Micro SD

card

SD card Micro SD card

GPIO 40 26 40

USB 2.0 1 2 4

Ethernet None 10/100mb Ethernet RJ45Jack

Wireless None 2.4GHz 802.11n

wireless

Bluetooth None Bluetooth 4.1

classic, Bluetooth

Low Energy

Audio Multi-Channel HD Audio over HDMI, Analog Stereo from 3.5mm Headphone Jack

Operating

system

Raspbian RaspBMC, Arch Linux,rise OS, OpenEL EC Pidora

Video output HDMI Composite

Supported
Resolutions

640x350 to 1920x1200, including 1080p, PAL &NTSC standards

Power Source Micro USB

Table: Technical Specification of Raspberry Pi Models

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 15

The foundation provides Raspbian, a Debian based Linux distribution for download as well as

third party ubuntu, windows 10 IOT core, RISC OS and specialized media center distributions.

Foundation also provides python and scratch as the main programming language with support for

other languages.

Why RaspberryPi?

 Inexpensive

 Cross-platform

 Simple clear programming environment

 Open source and extensible software

 Open source and extensible hardware

Exploring RaspberryPi Learning Board

The figure shows the Raspberry Pi board labeled.

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 16

 Processor: The Broadcom BCM2835 Soc is the first generation RaspberryPi. These

chips are equivalent to the chips used in smart phones. The RaspberryPi 2 uses a

Broadcom BCM2836 Soc with a 900MHz 32 bit quad core ARM cortex A7 processor

with 256KB shared L2 cache.

 Power Source: The easiest way to power the RaspberryPi is through the micro USB port

on the side of the unit. The recommended input voltage is 5v and input current is 2A. The

Raspberry Pi can operate on lower power supplies such as 5v @ 1A. Any excessive use

of the use of the USB ports or heavy CPU loading can cause the voltage drop and

instability during use.

 SD card: The working framework is stacked on a SD card space on the RaspberryPi .

There are no locally available storage accessible for RaspberryPi.

 GPIO(General Purpose input Output): These are non-specific pins on a co-ordinated

circuit to know an input or output pin. These can be controlled by the client. GPIO

capabilities may include

 GPIO pins can be designed to be input or output

 GPIO pins can be empowered/crippled

 Input values are meaningful(normally high=1, low=0)

 Yield values are writable/meaningful

 Input values can frequently be utilized as IRQs(regularly for wakeup occasions)

 In programming environment the GPIO.BOARD points to the pins by the number of the

pin. The GPIO.BCM points to the pins by the “Broadcom SOC channel” number; these are the

numbers after “GPIO” in the green rectangles around the outside of the underneath graphs

 DSI Display X: The Raspberrypi connector S2 is a display serial interface(DSI) for

connecting a liquid crystal display(LCD) panel using a 15-pin ribbon cable. The mobile

industry processor interface(MIPI) inside the Broadcom BCM2835 IC feeds graphics

data directly to the display panel through this connector.

 Audio Jack: A standard 3.5mm TRS connector is accessible on the RPi for stereo sound

yield. Any earphone or 3.5mm sound link can be associated straightforwardly. In spite of

the fact that jack can’t be utilized for taking sound information, USB mics or USB sound

cards can be utilized.

 Status LEDs: There are 5 status LEDs on the RPi that demonstrate the status of different

exercises such as:

 OK- SD card Access9by means of GPIO16)-named as “OK” on Model B Rev1.0

sheets and “ACT” on Model B rev2.0 and Model A sheets.

 POWER- 3.3 power- named as “PWR” on all the boards

 FDX-Full Duplex(LAN) (Model B)-marked as “FDX” on all the boards

 LNK-Link/Activity(LAN)(Model B)-marked as “LNK” on all the boards

 10M/100-10/100Mbit(LAN)(Model B)-named (erroneously) as “10M” on Model

B Rev 1.0 boards and “100” on model B Rev 2.0 and Model A boards USB ports.

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 17

There is 1 port on Model A, 2 on Model B and 4 on Model B+ operates at a current upto

100mA, An external USB powered hub is required to draw current more than 100mA.

 Ethernet Port: Ethernet port is accessible on Model B and B+. It can be associated with

a system or web utilizing a standard LAN link on Ethernet port. The Ethernet port are

controlled by Microchip LAN9512 LAN controller chip.

 CSI connector(CSI): Camera Serial interface is a serial interface outlined by

MIPI(Mobile Industry Processor Interface?) organization together went for interfacing

computerized camera with a portable processor. The RPi establishment gives a camera

uncommonly made to the Pi which can be associated with the Pi utilizing the CSI

connector.

 JTAG(Joint Test Action Group) headers: JTAG association was started in mid 1980s.

This association was started to address test point get to issues on PCB with surface mount

gadgets. The association formulated a technique for access to gadget pins by means of a

serial port that got be distinctly known as the TAP(Test Access Port). In 1990 the strategy

was turned into a universal standard(IEE std 1149.1). A large number of gadgets now use

this institutionalized port as a component to permit test and configuration architects to get

to pins.

 HDMI: High definition Multimedia interface to give both video and sound yield

RASPBERRYPI OPERATING SYSTEMS

 Various operating systems can be installed on RaspberryPi through SD cards. Most use a

MicroSD slot located on the bottom of the board

 The RaspberyPi primarily uses Raspbian, a debian based Linux operating system

 Other third party operating systems available via the official website include Ubuntu

MATE, Snappy Ubuntu core, Windows 10 IoT Core, RISC OS and specilaized

distribution for the Kodi media center and classroom management.

 Operating systems (not Linux based)

 RISC OS Pi(a special cut down version RISC OS Pico for 16MB cards and

large for all models of Pi 1 and 2 has also been made available)

 FreeBSD

 NetBSD

 Plan 9 from Bell Lbs inferno

 Windows 10 IoT core a no cost edition of windows 10 offered by Microsoft that

runs natively on the RaspberryPi 2

 Xv6-is a modern implementation of sixth edition Unix OS for teaching purpose,

it is ported to RaspberryPi from MIT Xv6, which can boot NOOBs

 Haiku-is an open source BeOS clone that can compile for the RaspberryPi and

several other ARM boards.

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 18

 Operating systems (Linux based)

 Xbian-sing Kodi open source digital media center

 openSUSE

 RaspberryPi Fedora remix

 Pidora another Fedora remix optimized for the raspberryPi

 Gentoo Linux

 Diet Pi

 CentOS\openWrt

 Kali Linux

 Ark OS

 Kano OS

 Nard SDK

 Media Center Operating systems

 OSMC

 OpenELEC

 LibreELEC

 Xbian

 Rasplex

 Audio Operating systems

 Volumio

 Pimusicbox

 Runeaudio

 moOdeaudio

 Recalbox

 Happi Game Center

 Lakka

 ChameleonPi

 Piplay

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 19

PROGRAMMING RASPBERRY PI WITH PYTHON

Raspberry Pi runs Linux and supports python out of the box. The general purpose input/output

capability provided by GPIO pins on Raspberry Pi makes it useful device for Internet of Things.

Some of the simple python programs are tabulated below

Program Code

Print hello world print(“hello world”)

Program to add

two numbers

a=1.2

b=5.3

sum=float(a)+float(b)

print(“the sum of{0} and {1} is {2}”.format(a,b,sum)

Program to roll a

dice

import random

min=1

max=6

roll_again=”yes”

while roll_again==”yes” or roll_again==”y”

print(“rolling the dices”)

print(“the values are”)

print(random.randomint(min,max))

print(random.randint(min,max))

Program to find

the IP address of

Raspberry Pi

import urllib

import re

print(“we will try to open this url,in order to get ip address”)

url=http://checkup.dyndnd.org

print(url)

Program to

generate

password

import string

from random import*

characters=string.ascii_letters+string.punctuation+string.digits

password=””.join(choice(characters)for x in range(randint(8,16)))

print(password)

Program to

generate fibnocci

series

a,b=0,1

while b<200:

print(b)

a,b=b,a+b

Program to check

for armstrong

number

num=int(input(“enter a number:”))

initial_sum=0

temp=num

while temp>0:

digit=temp%10

initial_sum+=digit**3

temp//=10

if num==initial_sum;

print(num,”is an Armstrong number”)

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 20

else:

print(num, “is not an Armstrong number”)

Program to

display calendar

of given month of

the year

import calendar

yy=2021

mm=07

print(calendar.month(yy,mm))

Table: Simple python programs on RaspberryPi

RaspberryPi can be interfaced with variety of sensors,actuators using GPIO pins and also SPI, I2C and

serial interfaces. Input from the RaspberryPi can be processed and action can be taken for instance

sending data to server, sending an email, triggering a relay switch. Some of the interfacing programs on

RaspberryPi are tabulated below.

Program #1 Printing to a terminal

Components

required

Raspberry Pi +SD card, monitor+HDMI cable, keyboard,mouse and power

supply, breadboard

Description Printing a message “hello world” using python programming. To print a greeting
message to the console. The steps are listed below

Key points 1. Find your Raspberry Pi

2. Mount SD card

3. Plug in the HDMI cable into the Pi and the monitor
4. Plug in the keyboard into the USB ports

5. Plug in the mouse into the USB ports

6. Plug in the power cable
7. Type in user name “pi”

8. Type in password “raspberry”

9. Double click on “terminal”

10. This will load the “terminal”
11. Type the following commands

 Change the directoryby the command $ cd Desktop

 Create new directory $ mkdir python_code
 Change directory to python code $ cd python_code

 Create new file helloworld.py

 Now enter the given code which is given below

 Run the python code “sudo python Helloworld.py”
 You will see it print “hello world” to the screen

Code File:Helloworld.py
#Access the python working environment

#!/usr/bin/python

#print a message Hello world on to the terminal

print(“Hello World”)

Output A message “Hello World” will print on the console

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 21

Program #2 Blinking an LED

Components

required

Raspberry Pi +SD card, monitor+HDMI cable, keyboard, mouse and power supply,
1Red LED and Blue LED, two 1K resistors, breadboard

Description Example of controlling the State of LED from ON to OFF and vice versa from

Raspberry Pi

the LEDs are connected to GPIO pin 17 and 27 respectively which is initialized as
output pin

The state of the Led is toggled by running the two programs given below

Circuit diagram

Key points 1. Create file “blink.py”

2. Create file “blink_ever.py”
3. Enter the above code

4. Run the python file “sudo python blink.py”<< watch the LEDs blink 2 times

5. Run the python file “sudo python blink_ever.py”<<watch the LEDs blink
forever

Code File: blink.py

#Access the python working environment

#!/usr/bin/python
#import the time module so as to switch LEDs on/off with the time elapsed

import time

#import the RPI.GPIO library

import RPi.GPIO as GPIO

#use one of the two numbering system either BOARD numbers/BCM

#Refer to the Channel numbers on the Broadcom SOC

GPIO.setmode(GPIO.BCM)

#configure pin 17 as an output

GPIO.setup(17,GPIO.OUT)

#configure pin 27 as an output

GPIO.setup(27,GPIO.OUT)

#Turn up LEDs on pin 17

GPIO.output(17,GPIO.HIGH)
#Turn up LEDs on pin 27

GPIO.output(27,GPIO.HIGH)

#wait for 1 second

time.sleep(1)

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 22

#turn LEDs off pin 17

GPIO.output(17,GPIO.LOW)

#turn LEDs off pin 27

GPIO.output(27,GPIO.LOW)

#wait for 1 second

time.sleep(1)

File: blink_ever.py
#Access the python working environment

#!/usr/bin/python

#import the time module so as to switch LEDs on/off with the time elapsed

import time
#import the RPI.GPIO library

import RPi.GPIO as GPIO

#use one of the two numbering system either BOARD numbers/BCM
#Refer to the Channel numbers on the Broadcom SOC

GPIO.setmode(GPIO.BCM)

#configure pin 17 and 27 as an output pins

GPIO.setup(17,GPIO.OUT)

GPIO.setup(27,GPIO.OUT)

#use while construct which runs infinite number of times there by blinking LEDs

forever
while 1:

 #turn up LEDs on

 GPIO.output(17,GPIO.HIGH)

 GPIO.output(27,GPIO.HIGH)

 time.sleep(1)

 #turn LEDs off

 GPIO.output(17,GPIO.LOW)

 GPIO.output(27,GPIO.LOW)

 time.sleep(1)

Output LEDs turns on/off twice when blink.py file is executed and LEDs keep changing

their state forever when blink_forever.py file is executed.

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 23

Program #3 Push button for physical input

Components

required

Raspberry Pi +SD card, monitor+HDMI cable, keyboard, mouse and power supply,

1Red LED and Blue LED, two 1K resistors, push button and jumper wires,

breadboard

Description Example for controlling an LED with a switch.

This example shows how to get input from GPIO pins and process the state of LED.

In the infinite while loop the value of pin 10 is checked and stat of the LED is
toggled if switch is pressed.

Circuit diagram

Key points 1. Create file buton.py

2. Enter the code

3. To run the python code “sudo python.py”

Code File:button.py

#Access the python working environment

#!/usr/bin/python

#import os module to enable interrupts from a push button
import os

#import the time module so as to know the time the user as given the input from a

push button

import time

#import the RPI.GPIO library

import RPi.GPIO as GPIO
#use one of the two numbering system either BOARD numbers/BCM

#Refer to the Channel numbers on the Broadcom SOC

GPIO.setmode(GPIO.BCM)

#configure pin 10 as input which reads the status of a switch button

GPIO.setup(10,GPIO.IN)

#print a message on to the terminal

print(“Button+GPIO”)
#read the status of a button from GPIO pin 10

print GPIO.input(10)

#run a infinite loop on the status of the button
while True:

 if (GPIO.input(10)==True);

 print(“Button Pressed”)

 #print the time when the input was given from the push button

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 24

 os.system(‘date’)
 #Read the status of a button from GPIO pin 10

 print GPIO.input(10)

 #wait for 5 seconds

 time.sleep(5)
 else:

 #clear the system variables

 os.system(‘clear’)
 #prompt the user to give an input

 print(“waiting for you to press a button”)

time.sleep(1)

Output Press the push button switch to turn ON/OFF LED

Program #4 Interact with the user

Components

required

Raspberry Pi +SD card, monitor+HDMI cable, keyboard, mouse and power supply,
1Red LED and Blue LED, two 1K resistors, push button and jumper wires,

breadboard

Description Example showing how to get input from a user and process the state of the LEDs
Example shows a python program for controlling the LED by asking the user to

choose which LED would blink(option “1” for Red and option “2” for Blue) and

how many times the LED would blink.

Circuit diagram

Key points 1. Create file “user_input.py”

2. Enter the code
3. Run the python file by “sudo python user_input.py”<<Run through the

questions and make an LED blink

Code File: user_input.py

#Access the python working environment
#!/usr/bin/python

#import os module to enable interrupts from a push button

import os
#import the time module so as to switch LEDs on/off with the time elapsed

import time

#import the RPI.GPIO library

import RPi.GPIO as GPIO

#use one of the two numbering system either BOARD numbers/BCM

#Refer to the Channel numbers on the Broadcom SOC

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 25

GPIO.setmode(GPIO.BCM)
#configure pin 17 and 27 as an output pins

GPIO.setup(17,GPIO.OUT)

GPIO.setup(27,GPIO.OUT)

#initialize variables for user input

led_ch=0

counter=0

#clear the python interpreter console

os.system(‘clear’)

print ”which LED would you like to blink”

#Accept 1 for Red

print ”1:Red?”
#Accept 2 for Blue

print ”2: Blue?

led_ch=input(“choose your option: ”)

if led_ch==1:

 #clear the python interpreter console

 os.system

 print “you picked the Red LED”

 counter= input(”How many times would you like to blink?: “)
 while counter>0:

 #on LED on pin 17

 GPIO.output(17,GPIO.HIGH)

 time.sleep(1)

 #off LED on pin 17

 GPIO.output(17,GPIO.LOW)

 time.sleep(1)
 #record the number of counts on LED

 counter=counter-1

if led_ch==2
 #clear the python interpreter console

 os.system

 print “you picked the Blue LED”

 counter=input(”How many times would you like to blink?: “)

 while counter>0:

 #on LED on pin 27

 GPIO.output(27,GPIO.HIGH)

 time.sleep(1)

 #off LED on pin 27

 GPIO.output(27,GPIO.LOW)

 time.sleep(1)

 #record the number of counts on LED

 counter=counter-1

Output LED gets flicked on the inputs given by the user

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 26

Program #5 BUZZER

Components

required

Raspberry Pi +SD card, monitor+HDMI cable, keyboard, mouse and power supply,
1Red LED and Blue LED, two 1K resistors, push button and jumper wires,

breadboard, buzzer

Description Example of python program for controlling peizo buzzer by reading an input value
which runs over a loop to beep number of times the user has chosen. Peizo buzzer is

connected to pin 22 and switch to raspberry pi

Circuit diagram

Key points 1. Create file “buzzer.py”

2. Enter the code

3. To run python code “sudo python buzzer.py”<<listen to it beep

Code File:buzzer.py

#!/usr/bin/python

import os

import time

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(22,GPIO.OUT)

loop_counter=0

def morsecode():
 #Dot dot dot

 GPIO.output(22,GPIO.HIGH)

 time.sleep(.1)

 GPIO.output(22,GPIO.LOW)

 time.sleep(.1)

 GPIO.output(22,GPIO.HIGH)

 time.sleep(.1)

 GPIO.output(22,GPIO.LOW)

 time.sleep(.1)

 GPIO.output(22,GPIO.HIGH)

 time.sleep(.1)

 #Dash dash dash

 GPIO.output(22,GPIO.LOW)

 time.sleep(.2)

 GPIO.output(22,GPIO.HIGH)

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 27

 time.sleep(.2)

 GPIO.output(22,GPIO.LOW)

 time.sleep(.2)

 GPIO.output(22,GPIO.HIGH)

 time.sleep(.2)

 GPIO.output(22,GPIO.LOW)

 time.sleep(.2)

 GPIO.output(22,GPIO.HIGH)

 time.sleep(.2)

 GPIO.output(22,GPIO.LOW)

 time.sleep(.2)

 #Dot dot dot

 GPIO.output(22,GPIO.HIGH)

 time.sleep(.1)

 GPIO.output(22,GPIO.LOW)

 time.sleep(.1)

 GPIO.output(22,GPIO.HIGH)

 time.sleep(.1)

 GPIO.output(22,GPIO.LOW)

 time.sleep(.1)

 GPIO.output(22,GPIO.HIGH)

 time.sleep(.1)

 GPIO.output(22,GPIO. LOW)

 time.sleep(.7)

os.system(‘clear’)

print ”Morse code”

loop_count=input(“how many times would you like SOS to loop?: ”)

while loop_count>0:

 loop_counter=loop_counter-1

 morsecode()

Output Listen to beep of peizo buzzer

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 28

Program #6 Temperature Sensor

Components

required

Raspberry Pi +SD card, monitor+HDMI cable, keyboard, mouse and power supply,
1Red LED and Blue LED, two 1K resistors, push button and jumper wires,

breadboard, buzzer, LM35 temperature sensor

Description

Circuit diagram

Key points

Code import os

import glob

import time
#initialise the device

os.system(‘modprobe w1-gpio’)

os.system(‘modprobe w1-therm’)

base_dir=’/sys/bus/w1/devices/’

device_folder=glob.glob(base_dir+’28*’)[0]

device_file=device_folder+’/w1_slave’

def read_temp_raw():

f=open(device_file,’r’)
lines=f.readlines()

f.close()

return lines

def read_temp():

 lines=read_temp_raw()

while lines[0].strip()[-3:]!=’YES’:
 time.sleep(0.2)

 lines=read_temp_raw()

equals_pos=lines[1].find(‘t=’)

if equals_pos!=-1:
temp_string=lines[1][equals_pos+2:]

temp_c=float(temp_string)/1000.0

temp_f=temp_c*9.0/5.0+32.0
return temp_c,temp_f

while True:
 print(read_temp())

 time.sleep(1)

Output Current room temperature is recorded

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 29

Program #7 Light Sensor

Components

required

Raspberry Pi +SD card, monitor+HDMI cable, keyboard, mouse and power supply,

1Red LED and Blue LED, two 1K resistors, push button and jumper wires,

breadboard, buzzer, LM35 temperature sensor, LDR light dependant sensor

Description An example involving an LDR sensor which reads the intensity of light and records

it a text files.

This example shows how to get an analog input from GPIO pins and process the
input.

An infinite loop runs over the sensor which records intensity of light with date and

time stamps every second.

Circuit diagram

Key points 1. Create file “ldr.py” an “touch foo.text”
2. To run the python code “sudo python ldr.py”<<see what the light levels in

the room are

3. Check the file “more foo.txt” to check the result

Code File:ldr.py

#!/usr/bin/env python

import os

import datetime

import time

import RPi.GPIO as GPIO

DEBUGER = 1

GPIO.setmode(GPIO.BCM)

def RCtimer(RCpins)

 readings=0

 GPIO.setup(RCpins, GPI.OUT)

 GPIO.output(RCpins, GPIO.LOW)

 time.sleep(.1)

 GPIO.setup(RCpins,GPIO.IN)

 #iterates 1 miliseconds over one cycle

 while(GPIO.input(RCpins)==GPIO.LOW):

 readings+=1

 return readings

while True:

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 30

 GetDateTime=datetime.datetime.now().strftime(“%Y-%m-

%d%H:%M:%S”)\

 LDRreading=RCtimes(3)

 Print RCtimes(3)

 #open a file

 fo=open(“/home/pi/10x10/foo.txt”,”wb”)

 fo.write(GetDateTime)

 LDRReading=str(LDRReading)

 fo.write(“\n”)

 fo.write(LDRReading)

 #close opened file

 fo.close()

 time.sleep(1)

Output Intensity of the light in the room is recorded on to a terminal as well as to text file

Program #8 Passive Inferred Sensor

Components

required

Raspberry Pi +SD card, monitor+HDMI cable, keyboard, mouse and power supply,

1Red LED and Blue LED, two 1K resistors, push button and jumper wires,

breadboard, buzzer, LM35 temperature sensor, LDR light dependant sensor,

Description An example involving an PIR sensor which detects the motion of an object.
This example shows how to get an analog input from GPIO pins and process the

input.

An infinite loop runs over the PIR sensor which waits for any of the movements
across its boundary.

Circuit diagram

Key points 1. Create file “touch python pir.py”

2. To run the python code “sudo python pir.py”<< Move in front of the PIR to
activate it

Code File:PIR.py

#!/usr/bin/env python

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BCM)

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 31

GPIO.setup(27,GPIO.OUT)

GPIO_PIR_sensor=7

print “PIR Module Test (CTRL-C to exit)”

#configure pin to be input

GPIO.setup(GPIO_PIR_sensor,GPIO.IN)

Currentstate=0

PreviousState=0

try:

 print “waiting for PIR to settle..”
 #iterate till PIR outputs the value 0

 while GPIO.input(GPIO_PIR_sensor)==1:

 CurrentState=0

print “Ready”

#iterate until user types CTRL-C

while True:
 #status of the PIR to be read

 CurrentState=GPIO.input(GPIO_PIR_sensor)

 if CurrentState==1 and PreviousState==0

 #trigger action on PIR

 print “Motion detected!”

#Previous status of the PIR to be recorded

GPIO.output(27,GPIO.HIGH)

time.sleep(1)

GPIO.output(27,GPIO.LOW)

PreviousState=1

elif CurrentState==0 and PreviousState==1:

#check if PIR has arrived to the ready state

print “Ready”

PreviousState=0
#stop for 10 milliseconds

time.sleep(0.01)

except KeyboardInterrupt:

print “Quit”

#GPIO settings to be eset

GPIO.cleanup()

Output Move in front of the PIR to activate it and sensor generates a message

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 32

CHAPTER-2

SMART AND CONNECTED CITIES

SMART CITY IOT ARCHITECTURE

A smart city IoT infrastructure is a four-layered architecture, as shown in

Figure. Data flows from devices at the street layer to the city network layer and connect to the

data center layer, where the data is aggregated, normalized, and virtualized. The data center layer

provides information to the services layer, which consists of the applications that provide

services to the city.

Figure: Smart city layered architecture

 Street Layer: The street layer is composed of devices and sensors that collect data and

take action based on instructions from the overall solution, as well as the networking

components needed to aggregate and collect data. Sensor devices are able to detect and

measure events in the physical world. A variety of sensors are used at the street layer for

a variety of smart city use cases such as A magnetic sensor can detect a parking event, An

air quality sensor, A lighting controller, Video cameras etc. The choice of sensor

technology depends on the exact nature of the problem, the accuracy and cost trade-offs

appropriate for it, and any installation limitations posed by the physical environment.

 City Layer: At the city layer, which is above the street layer, network routers and

switches must be deployed to match the size of city data that needs to be transported.

This layer aggregates all data collected by sensors and the end-node network into a single

transport network. One key consideration of the city layer is that it needs to transport

multiple types of protocols, for multiple types of IoT applications. The city layer must be

built around resiliency, to ensure that a packet coming from a sensor or a gate-way will

always be forwarded successfully to the headend station. Figure shows one such

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 33

approach. In this model, at least two paths exist from any aggregation switch to the data

center layer. A common protocol used to ensure this resiliency is Resilient Ethernet

Protocol (REP).

Figure: Street layer resiliency

 Data Center Layer: Ultimately, data collected from the sensors is sent to a data center,

where it can be processed and correlated. Based on this processing of data, meaningful

information and trends can be derived, and information can be provided back. The key

technology in creating any comprehensive smart solution with services is the cloud. With

a cloud infrastructure, data is not stored in a data center owned directly or indirectly by

city authorities. Instead, data is stored in rented logical containers accessed through the

Internet. This proximity and flexibility also facilitate the ex-change of information

between smart systems and allow for the deployment of new applications that can

leverage information from several IoT systems. Figure shows the vision of utilizing the

cloud in smart solutions for cities. The cloud provides a scalable, secure, and reliable data

processing engine that can handle the immense amount of data passing through it.

However, not all data is processed in the central cloud-based data center. Most of the

real-time and locally significant data can be directly processed at the edge of the network,

leveraging a fog architecture

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 34

Figure: The role of cloud for smart city applications

 Services Layer: Ultimately, the true value of ICT connectivity comes from the services

that the measured data can provide to different users operating within a city. Smart city

applications can provide value to and visibility for a variety of user types, including city

operators, citizens, and law enforcement. The collected data should be visualized

according to the specific needs of each consumer of that data and the particular user

experience requirements and individual use cases. For example, parking data indicating

which spots are and aren’t currently occupied can drive a citizen parking app with a map

of available spots.

The architecture provides application developers and sensor vendors with the tools necessary to

innovate and invent new community experiences via open APIs, software development kits

(SDKs), city information models, and more to develop city-qualified applications that drive high-

value smart city services.

SMART CITY SECURITY ARCHITECTURE

Security architecture for smart cities must utilize security protocols to fortify each layer of the

architecture and protect city data. Figure shows reference architecture, with specific security

elements high-lighted. Security protocols should authenticate the various components and protect

data transport throughout. The security architecture should be able to evolve with the latest

technology and incorporate regional guidelines. Network partners may also have their own

compliance standards, security policies, and governance requirements that need to be added to

the local city requirements.

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 35

Figure: Key Smart and Connected Cities Reference Architecture

 Starting from the street level, sensors should have their own security protocols. Some

industry-standard security features include device/sensor identification and authorization;

device/sensor data encryption. Another consideration may be the type of data that the

sensor is able to collect and process.

 Data should be secured both at rest and in motion, but when data is stored, additional

security needs to be put in place to ensure that information will not be tampered with,

abused, or stolen.

 The city layer transports data between the street layer and the data center layer. It acts as

the network layer.

 The following are common industry elements for security on the network layer.

 Firewall: A firewall is located at the edge, and it should be IPsec- and VPN-

ready, and include user- and role-based access control. It should also be integrated

with the architecture to give city operators remote access to the city data center.

 VLAN: A VLAN provides end-to-end segmentation of data transmission, further

protecting data from rogue intervention. Each service/domain has a dedicated

VLAN for data transmission.

 Encryption: Protecting the traffic from the sensor to the application is a common

requirement to avoid data tampering and eavesdropping.

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 36

SMART CITY USE-CASE EXAMPLES

The following sections examine some of the applications commonly used as starting points to

implement IoT in smart cities: connected street lighting, smart parking, smart traffic control, and

connected environment.

 Connected Street Lighting

Street lighting comprises one of the largest expenses in a municipality’s utility bill.

Maintenance of street lights is an operational challenge, given the large number of lights

and their vast geographic distribution.

Connected Street Lighting Solution:Cities commonly look for solutions to help

reduce lighting expenses and at the same time improve operating efficiencies while

minimizing upfront investment. In this regard, light-emitting diode (LED) technology

leads the transition from traditional street lighting to smart street lighting.

--LEDs require less energy to produce more light than legacy lights, and they have a

much longer life span and a longer maintenance cycle.

--A leading lighting company estimates that a complete switch to LED technology can

reduce individual light bills by up to 70%.

--LEDs are well suited to smart solution use cases.

Street Lighting Architecture

Connected lighting uses a light management application to manage streetlights remotely

by connecting to the smart city’s infrastructure. This application attaches to LED lights,

monitors their management and maintenance, and allows you to view the operational

status of each light. In most cases, a sensor gateway acts as an intermediate system

between the application and the lights (light control nodes). The gateway relays

instructions from the application to the lights and stores the local lights’ events for the

application’s consumption. The controller and LED lights use the cloud to connect to the

smart city’s infrastructure, as shown in Figure. A human or automated operator can use a

cloud application to perform automated scheduling for lights and even get light sensors to

perform automated dimming or brightening, as needed. The schedule can also impact the

light intensity level and possibly the color, depending on environ-mental conditions,

weather, time of year, time of day, location within the city, and so on

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 37

Figure: Connected Lighting Architecture

 Smart Parking

Parking is a universal challenge for cities around the globe. Ineffective parking access

and administration make parking in urban areas a constant struggle and affect cities in

many ways.

 Smart Parking Use Cases: Added traffic congestion is one consequence of drivers

looking for parking space, and it has several consequences.

 Contributes to pollution

 Causes motorist frustration

 Increases traffic incidents

 Cities often lose revenue

 Parking administration employee productivity suffers

 Parking availability affects income

 Smart Parking Architecture: A variety of parking sensors are available on the

market, and they take different approaches to sensing occupancy for parking spots. In

high-density environments (for example, indoor parking, parking decks), one or

several gateways per floor may connect to the parking sensors, using shorter-range

protocols such as ZigBee or Wi-Fi. The gateway may then use an-other protocol

(wired or wireless) to connect to the control station. In larger (for example, outdoor)

environments, a longer-range Low Power Wide Area (LPWA) protocol is common,

as shown in Figure

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 38

Figure: Connected Parking Architecture

Regardless of the technology used, parking sensors are typically event-driven objects.

A sensor detects an event and identifies it based on time or analysis. The event is

transmitted through the device’s communication protocol to an access point or

gateway, which forwards the event data through the city layer. The gateway sends it

to the cloud or a fog application, where it is normalized. An application shows the

parking event on operator dashboards, or personal smart phones, where an action can

be taken.

Smart parking has three users that applications must support through aggregated data:

city operators, parking enforcement personnel, and citizens. The following are some

potential user experiences for these three user types.

 City operators: These users might want a high-level map of parking in the

city to maintain perspective on the city’s ongoing parking situation. They

would also need information on historical parking data patterns to understand

congestion and pain points in order to be able to effectively influence urban

planning.

 Parking enforcement officers: These users might require real-time updates

on parking changes in a certain area to be able to take immediate action on

enforcement activities, such as issuing tickets or sending warnings to citizens

whose time is nearing expiration.

 Citizens: These users might want an application with a map (such as a built-in

parking app in their car) showing available parking spots, reservation

capabilities, and online payment. Their focus would be on minimizing the

time to get a parking spot and avoiding parking tickets.

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 39

 Smart Traffic Control

Traffic is one the most well-understood pain points for any city. It is the leading cause of

accidental death globally, causes immense frustration, and heavily contributes to

pollution around the globe. A smart city traffic solution would combine crowd counts,

transit information, vehicle counts, and so on and send events regarding incidents on the

road so that other controllers on the street could take action.

Smart Traffic Control Architecture

Figure: Smart city Traffic architecture

In the architecture shown in Figure, a video analytics sensor computes traffic events

based on a video feed and only pushes events (the car count, or metadata, not the

individual images) through the network. These events go through the architectural layers

and reach the applications that can drive traffic services. These services include traffic

light co-ordination and also license plate identification for toll roads. Some sensors can

also recognize abnormal patterns, such as vehicles moving in the wrong direction or a

reserved lane. In that case, the video feed itself may be uploaded to traffic enforcement

agencies.

Other types of sensors that are part of traffic control solutions include Bluetooth vehicle

counters, real-time speed and vehicle counters, and lighting control systems. These

sensors provide a real-time perspective while also offering data collection services for

historical data trending and correlation purposes. Communication techniques are as

varied as sensor form factors.

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 40

 Connected Environment

More than 90%of the world’s urban population breathes in air with pollutant levels that

are much higher than the recommended thresholds, and one out of every eight deaths

worldwide is a result of polluted air.

 The Need for a Connected Environment

Most large cities monitor their air quality. Data is often derived from enormous air

quality monitoring stations that are expensive and have been around for decades. Given

the price and size of air quality monitoring stations, cities cannot afford to purchase the

number of stations required to give accurate reports on a localized level and follow the

pollution flows as they move through the city over time.

To fully address the air quality issues in the short term and the long term, a smart city

would need to understand air quality on a hyper-localized, real-time, distributed basis at

any given moment. To get those measurements, smart cities need to invest in the

following:

 Open-data platforms that provide current air quality measurements from existing

air quality monitoring stations

 Sensors that provide similar accuracy to the air quality stations but are available at

much lower prices

 Actionable insights and triggers to improve air quality through cross-domain

actions

 Visualization of environmental data for consumers and maintenance of historical

air quality data records to track emissions over time

Connected Environment Architecture

As shown in Figure, at the street layer there are a variety of multivendor sensor offerings,

using a variety of communication protocols. Connected environment sensors might

measure different gases, depending on a city’s particular air quality issues, and may

include weather and noise sensors. These sensors may be located in a variety of urban

fixtures, such as in street lights, as explained earlier. They may also be embedded in the

ground or in other structures or smart city infrastructure. Even mo-bile sources of

information can be included through connected wearables that citizens might choose to

INTERNET OF THINGS 18EC64

BGS Institute of Technology Page 41

purchase and carry with them to understand the air quality around them at any given

moment. Crowd sourcing may make this information available to the global system.

Communication technologies depend on the location of the sensors. Wearables typically

communicate via a short-range technology (such as Bluetooth) with a nearby collecting

device (such as a phone)

Independent and standalone sensors typically use wireless technologies. In dense urban

environments, ZigBee and Wi-Fi are common. In addition to all the air quality sensor and

wearable data, the data center layer or application layer represented on the left side of

Figure also receives the open data from existing weather stations as an additional data

input. All these data inputs come together to provide a highly accurate sense of the air

quality in the city at any given moment. This information can be visualized in

applications that include heat maps of particulates, concentrates, and specific information

on the dangers of such gaseous anomalies. Different pollution levels can be

communicated, and gases can be tracked as they move throughout the city, either because

of the wind or because of the movement of gas sources. From this pollution and

environmental data and the analytics applied to it, the city can track problem areas and

take action in long-term urban planning to reduce the effects of air quality disturbances.

